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Abstract
We develop high-order entropy-conservative semi-discrete schemes for hyperbolic conserva-
tion laws applicable to non-conforming curvilinear grids arising from h-, p-, or hp-adaptivity.
More precisely, building on previous work with conforming grids by Crean et al. (J Comput
Phys 356:410–438, 2018) and Chan et al. (SIAM J Sci Comput 41:A2938–A2966, 2019),
we present two schemes: the first couples neighbouring elements in a skew-symmetric
method, the second in a pointwise fashion. The key ingredients are degree p diagonal-
norm summation-by-parts operators equipped with interface quadrature rules of degree 2p
or higher, a skew-symmetric geometric mapping procedure using suitable polynomial func-
tions, and a numerical flux that conserves mathematical entropy. Furthermore, entropy-stable
schemes are obtainedwhen augmenting the original schemeswith a stabilization term that dis-
sipatesmathematical entropy at element interfaces.Weprovide both theoretical andnumerical
analysis for the compressible Euler equations demonstrating the element-wise conservation,
entropy conservation/dissipation, and accuracy properties of the schemes. While both meth-
ods produce comparable results, our studies suggest that the scheme coupling elements in a
pointwise manner is more computationally efficient.

Keywords Summation-by-Parts · Entropy stability · High order · Non-conforming grids ·
Curvilinear grids

1 Introduction

In computational fluid dynamics, a posteriori error estimates can be used to achieve user-
requested error tolerances in an automated, reliable, and efficient manner by adaptively
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refining the mesh [1–3]. Discontinuous Galerkin (DG) methods are amenable to error-based
hp-adaptivity, since they easily handle hanging nodes (h-adaptivity) and support local varia-
tions in the degree of the domain’s polynomial spacewithout affecting neighbouring elements
(p-adaptivity). The numerical quadrature rules used to perform integration can be indepen-
dent of these discretization methods and, hence, interface coupling of neighbouring elements
of different degree and size is relatively easily achievable. In contrast, in the summation-by-
parts (SBP) and collocated finite-element communities, the cubature and quadrature rules
are intertwined with the discretization operators. As such, non-conforming interface cubature
nodal distributions arise when performing h-, p-, or hp-adaptivity, and thus schemes con-
structed for conforming grids can not be blindly applied on non-conforming grids. Although
the embedding of cubature rules in these discretization methods causes this issue, it has been
shown to be of great importance for both linearly and nonlinearly stable schemes [4,5]. The
SBP discrete derivative and integration operators are constructed such that integration by
parts is satisfied discretely. To the best of the authors’ knowledge, a priori nonlinear stability
proofs (without assuming exact integration) for high-order methods have so far relied on this
property—known as the SBP property [6–11].

Mattsson and Carpenter [12] first introduced interface interpolation operators to construct
a finite-difference SBP scheme that is both conservative and energy stable when applied on
non-conforming multi-block grids for first-order hyperbolic equations (see also the work of
Kopriva [13]). This approach was extended to the second-order wave equation by Wang et
al. [14]. Kozdon andWilcox [15] presented a methodology in which the interface coupling is
performed in a pointwise manner on an intermediate interface, as illustrated in Fig. 1. Their
method is also applicable to curved grids with hanging nodes. Lundquist and Nordström [16]
noted that SBP schemes suffer from suboptimal convergence rates on non-conforming grids;
motivated by this issue, they were able to prove that the accuracy of the schemes is limited
by interface interpolation operators which are of degree p − 1 for degree p discretization
operators. In Ref. [17], Friedrich et al. proved that an interface quadrature rule of degree
2p is needed in order to construct interpolation operators of degree p. Unfortunately, as
classical SBP operators are implicitly equipped with quadrature rules of degree 2p − 1
[4], they do not yield degree-preserving interpolation operators. To remedy this issue, the
authors constructed finite-difference SBP operators by increasing the boundary stencil size
of classical SBP operators such that the norm matrices—which hold the weights of the
quadrature rules—are degree 2p. Their scheme accordingly converged at optimal asymptotic
rates on non-conforming grids when coupled with these operators.

The nodal DG method with collocated tensor-product Legendre–Gauss–Lobatto (LGL)
solution and cubature nodes has enjoyed much success in the DG and SBP communities
since it satisfies the SBP property. We refer the interested reader to Refs. [18–25] for details
on energy- and entropy-stable schemes on conforming grids using the LGL operators. These
operators, unfortunately, suffer from under-convergence on non-conforming grids since their
mass (or norm) matrices are of degree 2p − 1. Carpenter et al. [26] and Parsani et al.
[27] constructed fully-staggered conforming and semi-staggered non-conforming entropy-
stable schemes in which the solution was evolved in time on the Legendre–Gauss (LG)
nodes whereas the flux computations were performed on the LGL nodes. The semi-staggered
technique ensured that the scheme’s convergence rate was optimal, since the interface nodes
were LG nodes equipped with a degree 2p + 1 > 2p quadrature rule. Friedrich et al. [28]
developed an entropy-stable scheme for hp-adaptivity on collocated,1 non-conforming affine

1 The term “collocated mesh” is used here as the opposite of “staggered mesh” and does not refer to a
finite-element method with collocated solution and cubature nodes.
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Fig. 1 Pointwise coupling of two
non-conforming blocks using an
intermediate interface

meshes for which the geometric Jacobian is constant. Their results demonstrated suboptimal
convergence rates when using the LGL operators and optimal convergence rates when using
the degree-preserving finite-difference SBP operators of Ref. [17].

In Ref. [29], et al. developed a framework to construct a first-derivative SBP operator
given a quadrature rule in one dimension. This unified many known discretization methods
as SBP operators and enabled the construction of novel tensor-product SBP operators using
well-known quadrature rules. More recently, this framework has been extended to include
multidimensional SBP operators on general elements [30,31] and then used to develop an
entropy-stable scheme on curved conforming meshes by Crean et al. [11]. This scheme
couples neighbouring elements in a skew-symmetric fashion such that it is compatible with
operators that do not include boundary nodes, such as the nodal tensor-product DG methods
with collocated solution and cubature LG nodes, without the use of staggered grids. In
Ref. [32], building on previous work (e.g. Ref. [10]), Chan and coauthors constructed an
entropy-stable scheme with the LG operators which couples interior elements in a pointwise
manner, again, without the use of staggered grids.

The primary objective of this paper is to develop high-order, entropy-stable, and element-
wise conservative semi-discrete schemes for hyperbolic conservation laws applicable to
non-conforming curvilinear (unstructured) grids arising from h-, p-, or hp-adaptivity.2 We
first present an extension of Crean et al.’s scheme [11]with the skew-symmetric inter-element
coupling term. We also develop a second scheme using the pointwise inter-element coupling
procedure of Chan [10]. These schemes can also be viewed as a generalization of the dis-
cretization method by Friedrich et al. [28] to curved grids and to multidimensional SBP
operators on general elements with or without boundary nodes. Furthermore, we numeri-
cally compare the efficiency and robustness of both schemes.

The paper is organized as follows. In Sect. 2, we introduce the notation, and in Sect. 3, we
present the ingredients needed to construct our schemes. After introducing the semi-discrete
entropy-stable schemes in Sect. 4, we demonstrate their properties both theoretically and
numerically in Sects. 5 and 6, respectively. Finally, in Sect. 7, we provide our final remarks.

2 While this paper is concerned with schemes applicable to non-conforming grids, a posteriori error estimates
are not used here to drive mesh adaptation.
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2 Notation

The notation used in this paper closely follows that of the second author’s previous papers
(e.g. Refs. [11,30,31]).

For a given set of partial differential equations (PDEs) in the domain � ⊂ R
d , where

d = 1, 2, or 3 is the spatial dimension, we tessellate � into ne non-overlapping (possibly
curved) elements Th ≡ {{�κ }neκ=1 |� = ∪ne

κ=1�κ, �κ ∩�τ = ∅, κ �= τ
}
, wherewe consider

�κ the closure of the open element �κ , i.e. �κ ≡ �κ ∪ ∂�κ . The tessellation Th is also
associated with a boundary set composed of d−1 dimensional elements referred to as facets,
�h ≡ {γ }, which can be subdivided into a boundary facet set,�h,b ≡ {γ ∈ �h | γ ∩∂� �= ∅},
and an interior facet set, �h,i ≡ {�h \ �h,b}. Each facet γ ∈ �h,i borders two neighbouring
elements (often indicated by κ and ν). In this work, we exclusively deal with scenarios where
�h,b = ∅ and �h,i = �h through the imposition of periodic boundary conditions. To indicate
a sum over all the facets of element κ , i.e. �(κ)

h ≡ {γ ∈ ∂�κ }, the notation∑κγ · is used.
Finally, each physical element is geometricallymapped to a reference element and the symbol
·̂ is used when referring to the reference domain (e.g. �̂κ ).

The notation 	· is reserved to denote directional vectors of length d; for instance,
	ξ ≡ [ξ1, . . . , ξd ]T and 	x ≡ [x1, . . . , xd ]T are the vectors of reference and physical spa-
tial coordinates, respectively. We use script type uppercase letters to denote scalar functions,
e.g. S(	x) ∈ R, and bold type for vector-valued functions, e.g. U(	x) ∈ R

m . The restriction of
an m-vector-valued function U(	x) on the nodal set S�κ ≡ {	x j }Nκ

j=1 of element κ is denoted

by the lowercase bold type letter uκ ∈ R
m·Nκ , where the values of U evaluated at the first

node run first, followed by those of the second node, etc.:

uκ = [U(	x1)T · · · U(	xNκ )
T
]T

.

Matrices are denoted by sans-serif uppercase letters, e.g. X ∈ R
n×m . The symbols ◦ and

⊗ are used to represent the Hadamard and Kronecker products, respectively. Finally, P and
Q ∈ Pp(�) are reserved for functions spanning the degree p polynomial space defined in
the domain �; p and q for their restrictions on a nodal set; 1n and 0n for column-vectors of
length n consisting of all ones and zeros, respectively; and In for the n × n identity matrix.

3 Theoretical Development

In this section, we present the key concepts needed to construct the two entropy-conservative
schemes of this paper.

3.1 Multidimensional Summation-by-Parts Operators

Thefirst key concept used to develop the schemes inSect. 4 ismultidimensional SBPoperators
on general elements, which were first introduced in Ref. [30]. Their definition is restated here
for completeness.

Definition 1 (Multidimensional summation-by-parts operators) The operator D̂ξi ∈ R
N×N

of degree p is said to be a summation-by-parts approximation of the first-derivative ∂
∂ξi

on

the nodal set S
�̂

≡ {	ξ j
}N
j=1 of a reference element with domain �̂ ⊂ R

d , if D̂ξi , Q̂ξi , Êξi ,

and Ĥ ∈ R
N×N satisfy the following conditions:
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1. [D̂ξi p] j = ∂P
∂ξi

(	ξ j
)
, ∀ P ∈ Pp(�̂), j ∈ {1, . . . , N };

2. D̂ξi = Ĥ
−1

Q̂ξi , where Ĥ = Ĥ
T
, and zTĤz > 0, ∀ z �= 0; and

3. Q̂ξi + Q̂
T
ξi

= Êξi , and qTÊξi p = ∫
∂�̂

PQnξi d�, ∀ P,Q ∈ Pr (�̂),

where nξi is the component of the outward-pointing normal unit vector in the ξi -direction
and r ≥ p.

The first condition ensures that the derivative operator D̂ξi ∈ R
N×N accurately approx-

imates first-order derivative terms to a given degree. The matrix Ĥ ∈ R
N×N , known as the

norm ormassmatrix, is symmetric positive-definite. In this paper, we only consider diagonal-
norm SBP operators, for which the Ĥ matrix is diagonal. The entries of the Ĥ matrix along
with the nodal set S

�̂
form a q ≥ 2p − 1 cubature rule. This can be written as

1TĤ p =
∫

�̂

P d�, ∀ P ∈ Pq(�̂).

Condition 3 requires that the matrix Êξi ∈ R
N×N approximates surface integrals in the

ξi -direction. All 3 conditions of Definition 1 can be combined to show that the SBP oper-
ators discretely mimic integration by parts with a one-to-one correspondence between the
continuous and discrete terms, i.e.

∫

�̂

V ∂U
∂ξi

d�
︸ ︷︷ ︸

≈

+
∫

�̂

∂V
∂ξi

U d�
︸ ︷︷ ︸

≈

=
∫

∂�̂

VUnξi d�
︸ ︷︷ ︸

≈

vTQ̂ξi u + vTQ̂
T
ξi
u = vTÊξi u,

∀ i ∈ {1, . . . , d}. We emphasize that this exact discrete relationship holds for v, u ∈ R
N

corresponding to any functions V and U that are square integrable and whose weak first
derivatives are also square integrable (i.e. V,U ∈ H1(�̂)).

Since boundary and inter-element conditions are generally weakly imposed in a pointwise
manner [31], it is important to decompose the surface operators Êξi into an interpola-
tion/extrapolation operator, a facet mass matrix, and an outward-pointing normal component
for each of the n f linear and non-overlapping facets γ̂ of the reference element. Following
Ref. [31], this decomposition can be represented as

Êξi =
∑

γ̂∈∂�̂

Ê
γ

ξi
=
∑

γ̂∈∂�̂

nγ,ξi R
T
γ B̂γ Rγ , (1)

where Rγ ∈ R
Nγ ×N interpolates/extrapolates3 functions from the volume nodal set S

�̂
onto

the facet nodal set Sγ̂ ≡ {	ξγ̂ ,k
}Nγ

k=1, and B̂γ ∈ R
Nγ ×Nγ is a diagonal facet mass matrix

holding quadrature weights along its diagonal. To comply with the accuracy requirement of
condition 3 of Definition 1, we impose individual accuracy conditions on the extrapolation
operator and the facet mass matrix. Specifically, we require that4

[Rγ p]k = [ pγ̂ ]k = P
(	ξγ̂ ,k

)
, ∀ P ∈ Pr (�̂), k ∈ {1, . . . , Nγ }, (2a)

3 For brevity, we will refer to the Rγ matrix as the extrapolation operator instead of the interpola-
tion/extrapolation operator for the remainder of this work.
4 Equation (2b) is sufficient but not necessary to construct SBP operators. For instance, the LGL operators
are equipped with a quadrature rule of degree s = 2p − 1 � 2p yet they still satisfy the SBP property. In this
work, we exclusively deal with SBP operators that obey (2b).
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1TB̂γ pγ̂ =
∫

∂�̂γ

P d�, ∀ P ∈ Ps(∂�̂γ ), (2b)

where s ≥ 2r and, as previously mentioned, r ≥ p.

3.1.1 Construction of SBP Operators

To satisfy (2b), we choose (or construct) a facet quadrature rule of degree s ≥ 2r , which
defines both B̂γ and Sγ̂ for all the n f facets of the reference element. Similarly, for the volume
cubature rule, we choose (or construct) a cubature rule of degree q ≥ 2p − 1, which defines
both Ĥ and S

�̂
. Thereafter, we construct Rγ as follows: we define nr as the cardinality of

the monomial basis of total degree r (i.e. the number of linearly independent basis functions
spanning the degree r polynomial space), we assume that the volume nodal set S

�̂
produces

a degree r full-column-rank Vandermonde matrix5 V̂� ∈ R
N×nr , and we let V̂γ ∈ R

Nγ ×nr

be the degree rκ Vandermonde matrix evaluated at the nodal set Sγ̂ . We then construct Rγ as

Rγ ≡ V̂γ V̂
†
�,

where † denotes the Moore-Penrose pseudo-inverse, e.g. A† ≡ (ATA)−1AT for a non-square
matrix A with full column rank. Thus, by construction, this operator satisfies (2a). After
constructing Êξi from (1), we follow the procedure outlined in Theorem 2 of Ref. [31] to
construct Q̂ξi and D̂ξi .

In the case of collocated volume and facet SBP nodes, the extrapolation operator simpli-
fies to the delta Kronecker operator, i.e. [Rγ ] jl = δ jl , ∀ j ∈ {1, . . . , N }, l ∈ {1, . . . , Nγ },
and simply picks the facet nodes that collocate with the volume nodes instead of perform-
ing an interpolation or extrapolation. Furthermore, the surface operators Êξi are diagonal
(accordingly, we refer to this subset of SBP operators as diagonal-E operators). It has been
shown that the inter-element coupling of entropy-stable schemes on conforming grids with
diagonal-E operators, such as the LGL operators, is less computationally expensive than those
with dense-E operators, such as the LG operators (see, for instance, Refs. [32–34]). How-
ever, in Ref. [35], our numerical studies suggested that dense-E entropy-stable schemes are
computationally more efficient than diagonal-E entropy-stable schemes on non-conforming
triangular grids primarily due to the higher accuracy properties provided by dense-E operators
compared to diagonal-E operators.

3.2 High-Order Interface Operators

The second key concept used to develop the schemes in Sect. 4 is high-order intermediate
interface quadrature rules and interpolation/extrapolation operators used to couple elements
with non-conforming interfaces arising from h-, p-, and hp-adaptivity.

3.2.1 Non-Conforming Elements Resulting From p-Adaptivity

On conforming grids, neighbouring elements share the same facet nodes, as shown in Fig. 2a
and, hence, inter-element coupling is usually performed in a pointwise manner. When the
degree of one of two neighbouring elements is changed, the facet nodes no longer conform.
In such a case, we introduce a shared intermediate interface (or mortar element) to enable

5 In the case that this assumption does not hold, a different cubature rule can be chosen or constructed.
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(a) (b) (c)

Fig. 2 Visualization of coupling of conforming and non-conforming neighbouring elements. Non-conforming
elements require an intermediate interface

the pointwise coupling of the elements, as illustrated in Fig. 2b. The conditions that must
be satisfied by the quadrature rule on the intermediate interface and the interface interpola-
tion/extrapolation operators is provided in Definition 2.

Definition 2 (High-order intermediate interface operators) Let Sκγ̂ ≡ {	ξκγ̂ ,k
}Nκγ

k=1 and Sνγ̂ ≡
{	ξνγ̂ ,l

}Nνγ

l=1 be the reference facet nodal sets of two different degree neighbouring elements

with conforming facet lengths, and SÎ ≡ {	ξ Î ,m
}NI
m=1 be the facet nodal set of the intermediate

interface. The intermediate interface preserves the design-order accuracy of the SBPoperators
and the SBP property if it satisfies the following conditions:

1. [Pκγ→I qκγ̂ ]m = Q
(	ξ Î ,m

)
, ∀ Q ∈ Prκ (∂�̂γ ), m ∈ {1, . . . , NI },

[Pνγ→I qνγ̂ ]m = Q
(	ξ Î ,m

)
, ∀ Q ∈ Prν (∂�̂γ ), m ∈ {1, . . . , NI }; and

2. RTκγ B̂κγ Rκγ = RTκγ P
T
κγ→I B̂IPκγ→IRκγ ,

RTνγ B̂νγ Rνγ = RTνγ P
T
νγ→I B̂IPνγ→IRνγ ,

where rκ ≥ pκ , rν ≥ pν , qκγ̂ and qνγ̂ hold the values of polynomial Q evaluated on the
nodal sets Sκγ̂ and Sνγ̂ respectively, Pκγ→I ∈ R

NI×Nκγ and Pνγ→I ∈ R
NI×Nνγ interpo-

late/extrapolate6 functions from Sκγ̂ and Sνγ̂ , respectively, to SÎ , and B̂κγ ∈ R
Nκγ ×Nκγ ,

B̂νγ ∈ R
Nνγ ×Nνγ , and B̂I ∈ R

NI×NI are the diagonal facet mass matrices holding the
quadrature weights of the quadrature nodal sets Sκγ̂ , Sνγ̂ , and SÎ respectively.

The first condition ensures that the interface extrapolation operators are design-order
accurate. Condition 2 enforces that discrete inner products performed on the intermediate
interface be equivalent to discrete inner products performed on the element’s facet. For
instance, for element κ , this can be mathematically represented as

(Rκγ vκ )TB̂κγ (Rκγ uκ ) = (Pκγ→IRκγ vκ )TB̂I (Pκγ→IRκγ uκ ), ∀ vκ , uκ ∈ R
Nκ .

The second condition consequently ensures that the SBP property is automatically preserved
on non-conforming grids and is key for the conservation and stability properties of the
schemes presented in this work.

The interface extrapolation operator Pκγ→I is constructed as follows: we define nrκ as
the cardinality of the monomial basis of total degree rκ , we assume that the facet nodal set
Sκγ̂ produces a degree rκ full-column-rank Vandermonde matrix V̂κγ ∈ R

Nκγ ×nrκ , and we

let V̂ I ∈ R
NI×nrκ be the degree rκ Vandermonde matrix evaluated at the nodal set SÎ . We

then construct Pκγ→I as

6 Similar to Rγ , we will refer to these operators as interface extrapolation operators for brevity.
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Pκγ→I ≡ V̂ I V̂
†
κγ .

The interface extrapolation operator Pνγ→I is constructed in a similar manner. Thus, by con-
struction, these extrapolation operators satisfy condition 1 of Definition 2. To fulfill condition
2, it suffices that the interface’s massmatrix B̂I be of degree sI ≥ max(sκ , sν)where sκ ≥ 2rκ
and sν ≥ 2rν are the degrees of the facet mass matrices B̂κγ and B̂νγ respectively. The proof
is shown in Lemma 1 of Appendix A. In this work, to minimize the floating point operations,
we set the intermediate interface’s quadrature rule as the more accurate facet quadrature rule
of the two neighbouring elements. For instance, if sκ > sν , then we have SÎ = Sκγ̂ and

B̂I = B̂κγ .

3.2.2 Non-conforming Elements Resulting From h- and hp-Adaptivity

In the case of neighbouring elements of constant degree with hanging nodes, we subdivide
the largest element’s facet (parent facet) into subfacets (child facets) that conform in length
with the smaller neighbouring element’s facets, as shown in Fig. 2c. The parent facet’s
quadrature rule is then affinely mapped onto the child facets (e.g. B̂κγ ← 1

nc
B̂κγ , where nc is

the number of child facets for a given parent facet). Since the lengths of neighbouring facets
are now equal, but the nodal distributions of the largest element’s parent and child facets
are not, we develop high-order intermediate interfaces that satisfy Definition 2. In the case
of neighbouring elements of different degrees with hanging nodes, the same procedure is
followed.

3.3 Curvilinear Transformation

When a curved geometry is represented using a linear mesh, the solution error may be limited
to second order independent of the degree of the discretization method. The use of high-order
curved elements is thus essential in such cases to benefit from the accuracy properties of
high-order discretization methods [36,37]. So far, we have introduced SBP and intermediate
interface operators on reference elements. In this subsection, we outline the procedure to
construct the SBP and interface operators on a curved physical element given those of the
corresponding reference element. UnderAssumption 1, this procedure, which follows closely
that of Crean et al. [11], ensures that the SBP property is preserved, that constant functions
are exactly extrapolated and differentiated, and that the physical operators are design-order
accurate7. These properties are required for conservation, freestream preservation, entropy
conservation, and accuracy.

Assumption 1 First, we assume that we have valid SBP and intermediate interface operators,

satisfying Definitions 1 and 2, on the reference element �̂κ . Second, we assume that we have
a unique and invertible (time-independent) degree l geometric mapping polynomial function

Mκ : �̂κ → �κ which maps any point 	ξk ∈ �̂κ to the corresponding point 	xk ∈ �κ , i.e.
	xk = Mκ (	ξk). Finally, we require that l ≤ pmin + 1 in two dimensions, and l ≤ � pmin

2 � + 1,
in three dimensions, where � · � is the floor operator and pmin ≡ min�κ∈Th {pκ } is the lowest
degree SBP operator in the tessellated domain.

7 We refer the interested reader to Ref. [11] for the proofs.
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Before constructing the physical operators, we define the geometric Jacobian of the trans-
formation in element κ as

[Jκ (	ξk)]i j ≡ ∂xi
∂ξ j

(	ξk) = ∂Mκ,i

∂ξ j
(	ξk), ∀ i ∈ {1, . . . , d}, j ∈ {1, . . . , d}, 	ξk ∈ �̂κ .

Furthermore, [Jκ (	ξk)]−1
i j = ∂ξi

∂x j
(	ξk) and |Jκ (	ξk)| = | ∂ 	x

∂	ξ (	ξk)| are the inverse Jacobian and

the determinant of the Jacobian, respectively.
The physical facet operators are constructed as follows:

[BI ]ll = [B̂I ]ll |Jκ (	ξ Î ,l)|, ∀ 	ξ Î ,l ∈ SÎ ,

[N(κ)
I ,x j

]ll =
d∑

i=1

nγ,ξi

∂ξi

∂x j
(	ξ Î ,l), ∀ 	ξ Î ,l ∈ SÎ , j ∈ {1, . . . , d}, and

Ex j =
∑

κγ

RTκγ P
T
κγ→IBIN

(κ)
I ,x j

Pκγ→IRκγ , ∀ j ∈ {1, . . . , d}.

Note that the normal matrix N(κ)
I ,x j

∈ R
NI×NI is diagonal and that the reference extrapola-

tion operators have been used without modification. The physical element’s mass matrix is
constructed as

[H]kk = [Ĥ]kk |Jκ (	ξk)|, ∀ 	ξk ∈ S
�̂
.

We then constructQx j , ∀ j ∈ {1, . . . , d} asQx j = Sx j + 1
2Ex j , where Sx j is a skew-symmetric

matrix defined as

[Sx j ]kl = 1

2

d∑

i=1

(
|Jκ (	ξk)| ∂ξi

∂x j
(	ξk)[Q̂ξi ]kl −

|Jκ (	ξl)| ∂ξi

∂x j
(	ξl)[Q̂ξi ]lk

)
, ∀ 	ξk, 	ξl ∈ S

�̂
, j ∈ {1, . . . , d}.

Finally,

Dx j = H−1Qx j , ∀ j ∈ {1, . . . , d}. (3)

It is important to satisfy the metric identities for freestream preservation [38,39]. For fixed
meshes, the metric identities are:

d∑

i=1

∂

∂ξi

(
|J| ∂ξi

∂x j

)
= 0, ∀ j ∈ {1, . . . , d}. (4)

Due to the definitions of Qx j and Dx j , it can be shown that the discrete version of (4) is
[11,40]

Dx j 1 = 0, ∀ j ∈ {1, . . . , d}, (5)

which, unlike its continuous counterpart, is not generally satisfied on curvilinear grids. The
underlying reason is that the physical operators are not explicitly constructed in such a way
to satisfy an analogous polynomial exactness condition to condition 1 of Definition 1. Con-
sequently, the SBP derivative operators do not exactly differentiate polynomials in Pp(�) on
curvilinear grids and, therefore, (5) which simply states that the physical derivative operators
can exactly differentiate constant functions—might not hold. However, under Assumption 1,
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(5) is automatically satisfied: by carefully limiting the degree of the geometric transformation
function in two and three dimensional spaces, we ensure that the metric terms |J| ∂ξi

∂x j
are at

most degree pmin polynomial functions with respect to 	ξ and, thus, can be exactly extrapo-
lated and differentiated by reference SBP operators of degree pmin or higher. In other words,
in such a case, the discrete metric identities follow immediately, since they are equivalent
to the continuous ones. If a higher-order mapping function is required than � pmin

2 � + 1 in
three-dimensions to represent the geometry of interest, the metric terms can be defined such
that the discrete metric identities are enforced, for instance, by using the curl formulation of
Ref. [40] (which is based on the work of Refs. [41] and [42]) or by solving local quadratic
optimization problems as performed in Ref. [11].

3.4 Euler Equations and the Entropy Inequality

While the theory presented in this paper is applicable to any hyperbolic systemof conservation
laws endowedwith an entropypair, in thiswork,we focus on theEuler equationswhich govern
compressible inviscid flows. The d-dimensional Euler equations in (conservative differential
form) are

∂U
∂t

+
d∑

i=1

∂Fxi

∂xi
= 0 in � × I (6)

with

U =
⎡

⎣
ρ

ρ 	u
e

⎤

⎦ , Fxi =
⎡

⎣
ρui

	f (mom)
xi
ρui h

⎤

⎦ , 	u =
⎡

⎢
⎣

u1
...

ud

⎤

⎥
⎦ , and 	f (mom)

xi =
⎡

⎢
⎣

ρu1ui + pδ1i
...

ρudui + pδdi

⎤

⎥
⎦ ,

where I ≡ (0, T ) ⊂ R is a time interval, ρ is the density, ui is the velocity in the xi -
direction, e is the total energy per unit volume, p is the pressure, and h ≡ e+p

ρ
is the total

enthalpy per unit mass of the fluid. The vector U(	x, t) ∈ H ∈ R
m holds the conservative

variables which belong to the convex set of physically admissible states denoted by H.8

The vector Fxi (	x, t,U) ∈ R
m holds the inviscid fluxes in the xi -direction, and 	u(U) ∈ R

d

and 	f (mom)
xi (U) ∈ R

d are respectively the velocity and xi -direction momentum flux vectors,
where m = d + 2 is the number of equations in the system. For calorically perfect gases, the
pressure is given by

p = (γ − 1)

(
e − 1

2
ρ 	uT 	u

)
,

where γ is the heat capacity ratio, which is equal to 1.4 for air under standard conditions.
The second law of thermodynamics is a secondary equation that can be derived from the

Euler equations. An equivalent mathematical statement, known as the entropy inequality, in
the general (integral) form

∫

�

∂S
∂t

d� +
d∑

i=1

∫

∂�

Gxi nxi d� ≤ 0 (7)

8 For the Euler equations,H is the set of conservative variables with positive density and pressure.

123



Journal of Scientific Computing (2020) 82 :70 Page 11 of 46 70

can also be cast for the Euler equations and other conservation laws endowedwith an entropy–
entropy–flux pair (S,Gxi ). The entropy pair satisfies the following conditions:

∂2S
∂U2 =

(
∂2S
∂U2

)T
, zT

∂2S
∂U2 z > 0, ∀ z �= 0, (8a)

∂Gxi

∂U = WT ∂Fxi

∂U , ∀ i ∈ {1, . . . , d}, (8b)

whereW(U) ≡ ∂S
∂U ∈ R

m is known as the entropy variables. For the Euler andNavier-Stokes
equations, the entropy S ≡ −ρs/(γ − 1) and entropy flux Gxi ≡ uiS, where s ≡ ln(p/ργ )

is the thermodynamic entropy per unit mass and U ∈ H, satisfy (8) [43]. For such a pair, the
entropy variables are

W =
[

γ−s
γ−1 − ρ

2p 	uT 	u,
ρ
p 	uT, − ρ

p

]T
.

The entropy inequality and entropy variables satisfying the entropy pair conditions (8)
have various interesting properties if pressure and density are positive. For instance, there is
a one-to-one mapping between U andW due to the strict convexity of S(U); when the Euler
equations are written in terms of the entropy variables, they form a well-posed symmetric
hyperbolic system of equations for Cauchy problems9 [44,45]; and Dafermos [46] showed
that a bound on the entropy S provides a bound on the solutionU for hyperbolic conservation
laws. To appeal to the stability statement of Dafermos [46], in this work, we are interested
in spatial discretization methods that can discretely mimic the entropy inequality.

We derive the flux terms of the entropy inequality (7) from those of the governing equations
(6) to highlight the steps that must be followed at the semi-discrete level. We left-multiply the
flux terms of the Euler equations byWT, integrate over the domain, and simplify as follows:

∫

�

WT ∂Fxi

∂xi
d� =

∫

�

WT ∂Fxi

∂U
∂U
∂xi

d�

=
∫

�

∂Gxi

∂U · ∂U
∂xi

d� =
∫

�

∂Gxi

∂xi
d� =

∫

∂�

Gxi nxi d�,

∀ i ∈ {1, . . . , d}, where we used the chain rule for the first and penultimate equalities, the
contraction property (8b) for the second equality, and the divergence theorem for the last step.
While the divergence theorem can be discretelymimicked using SBP operators, the chain rule
does not necessarily hold at the discrete level. Fortunately, we can use numerical fluxes that

conserve entropy in the sense of Tadmor [47] to recover
∫
�

∂Gxi
∂xi

d� from
∫
�
WT ∂Fxi

∂xi
d�

without relying on the chain rule.

3.5 Entropy-Conservative Flux Functions

As mentioned above, numerical flux functions that conserve entropy, named entropy-
conservative fluxes, are essential for entropy-stable methods. We also require these fluxes to
be symmetric in their arguments, consistent, and continuously differentiable. The last two
requirements are needed for high-order accuracy [11]. Definition 3 formally summarizes
these requirements.

Definition 3 (Entropy-conservative flux function) A two-point numerical flux function
F∗

xi (·, ·) : H × H → R
m is said to be an entropy-conservative, symmetric, consistent,

9 Well posedness of the Euler equations is a complex subject: see, for example, Refs. [48,49].
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and continuously differentiable flux function in the xi -direction if it satisfies the following
conditions:

1.

(
W(U1) − W(U2)

)T
F∗

xi (U1,U2) = ψxi (U1) − ψxi (U2),

2. F∗
xi (U1,U2) = F∗

xi (U2,U1),
3. F∗

xi (U,U) = Fxi (U), and
4. F∗

xi (·, ·) ∈ C1(H,H)

where ψxi ≡ WTFxi − Gxi ∈ R is known as the potential flux in the xi -direction, and U1

and U2 are two different states.

The first condition of the above definition is known as Tadmor’s condition and was first
derived by Tadmor in Ref. [47].10 In this paper, we denote any flux function that satisfies
Definition 3 as F∗,EC

xi (·, ·).
It is possible to use numerical flux functions to approximate the derivative of fluxes. At

the continuous level, for any symmetric, consistent, and differentiable flux function, we can
show that [9–11]

∂Fxi

∂xi
(U) = 2

∂F∗
xi

∂xi
(C,U)

∣∣∣∣C=U
, (9)

where we assume U is a function of xi , i.e. U = U(xi ), and C is not. In words, the derivative
of the actual flux is equal to twice the derivative of the numerical flux where we take only the
second argument as a function of xi . While in the finite-difference community, it is common
to approximate the left-hand side of (9) as

∂Fxi

∂xi
([uκ ] j ) ≈

Nκ∑

k=1

[Dxi ] jkFxi ([uκ ]k), ∀ j ∈ {1, . . . , Nκ },

for entropy-conservative methods, we must use entropy-conservative flux functions and
approximate its right-hand side as

2
∂F∗,EC

xi

∂xi
(c, [uκ ] j )

∣∣∣∣
c=[uκ ] j

≈ 2
Nκ∑

k=1

[Dxi ] jkF∗,EC
xi ([uκ ] j , [uκ ]k), ∀ j ∈ {1, . . . , Nκ }.

(10)

Linear combinations of two-point entropy-conservative fluxes, such as (10), were first used
by LeFloch et al. [50] (and subsequently by other researchers such as Fisher and Carpenter
[7]) to develop high-order entropy-conservative schemes.

To present the schemes in Sect. 4 in (compact) matrix form, we note that

[{
Ã ◦ Fxi (uκ , uν)

}
1ν

]

j
=

Nν∑

k=1

[A] jkF∗,EC
xi ([uκ ] j , [uν]k), ∀ j ∈ {1, . . . , Nκ },

10 For the entropy pair of the Euler equations used in this paper, the potential flux is simply the momentum
in the xi -direction, i.e. ψxi = ρui .
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where Ã ≡ A ⊗ Im , A ∈ R
Nκ×Nν is a generic matrix and Fxi (·, ·) : R

m·Nκ × R
m·Nν →

R
m·Nκ×m·Nν is defined as [11]

Fxi (uκ , uν) ≡

⎡

⎢⎢⎢⎢⎢
⎣

diag

[
F∗,EC

xi ([uκ ]1, [uν]1)
]

· · · diag

[
F∗,EC

xi ([uκ ]1, [uν]Nν )

]

...
. . .

...

diag

[
F∗,EC

xi ([uκ ]Nκ , [uν]1)
]

· · · diag
[
F∗,EC

xi ([uκ ]Nκ , [uν]Nν )

]

⎤

⎥⎥⎥⎥⎥
⎦

.

The entropy-conservative fluxes are diagonally placed in this matrix and Ã is used in
order to avoid coupling fluxes associated to different equations. Furthermore, the proper-

ties

(
Fxi (uκ , uν)

)T
= Fxi (uν, uκ ) and

(
Fxi (uκ , uκ )

)T
= Fxi (uκ , uκ ), which are a direct

consequence of the structure of thematrices and the symmetry of entropy-conservative fluxes,
are used extensively in the proofs of this paper.

3.6 Compact SBPMatrices

Here we define some matrices to allow for a clear and concise presentation of the schemes
and proofs in this paper. Important properties of these matrices are also shown.

We define E(κν)
xi ∈ R

Nκ×Nν , E(κκ)
xi ∈ R

Nκ×Nκ , and E(κ I )
xi ∈ R

Nκ×NI as

E(κν)
xi ≡ RTκγ P

T
κγ→IBIN

(κ)
I ,xi

Pνγ→IRνγ ,

E(κκ)
xi ≡ RTκγ P

T
κγ→IBIN

(κ)
I ,xi

Pκγ→IRκγ ,

E(κ I )
xi ≡ RTκγ P

T
κγ→IBIN

(κ)
I ,xi

,

∀ i ∈ {1, . . . , d}.We can easily demonstrate that E(κν)
xi = −

(
E(νκ)
xi

)T
(sinceN(κ)

I ,xi
= −N(ν)

I ,xi
),

and Exi = ∑κγ E(κκ)
xi . Furthermore, since the extrapolation operators exactly extrapolate

constant functions, the equalities Pκγ→IRκγ 1κ = Pνγ→IRνγ 1ν = 1I hold and we can show
that the properties E(κν)

xi 1ν = E(κκ)
xi 1κ and 1Tκ E

(κ I )
xi = 1TI BIN

(κ)
I ,xi

hold as well ∀ i ∈ {1, . . . , d}.

4 Non-conforming Entropy-Stable Schemes

In this section, we introduce two entropy-conservative semi-discrete schemes applicable to
non-conforming curvilinear gridswith periodic boundary conditions. Thefirst, is an extension
of Crean et al.’s work [11] to non-conforming grids. The scheme is compatible with any
diagonal-norm SBP operator equipped with facet quadrature rules of degree 2p or higher;
however, for dense-E operators, it fully couples the volume nodes of neighbouring elements.
Accordingly, we term this method the “dense-coupling entropy-conservative scheme”. The
second, named the “pointwise-coupling entropy-conservative scheme”, uses the penalty term
of Chan [10], which couples neighbouring elements in a pointwise manner via the shared
interface nodes. We then introduce an entropy dissipative interface stabilization term which
can augment both schemes to produce entropy-stable schemes. While both semi-discrete
methods are entropy-conservative (or entropy-stable when augmented with the interface
stabilization term), they rely on the assumption that certain quantities, such as density and
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pressure for the Euler equations, remain positive. Furthermore, we prove that the diagonal-
E entropy-conservative scheme of Ref. [35] (which is an extension of the tensor-product
scheme of Friedrich et al. [28] to general elements) is a subset of the dense-coupling entropy-
conservative scheme on affine non-conforming meshes. Finally, we conclude this section by
describing how to implement the algorithms in a step-by-step manner.

4.1 Dense-Coupling Entropy-Conservative Scheme

The strong form of the dense-coupling entropy-conservative scheme seeks, for an arbitrary
element κ , the solution uκ ∈ R

m·Nκ such that

duκ

dt
+

d∑

i=1

(
2D̃xi ◦ Fxi (uκ , uκ )

)
1κ = −

∑

κγ

d∑

i=1

H̃
−1
{
Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

}
1ν

+
d∑

i=1

H̃
−1
{
Ẽxi ◦ Fxi (uκ , uκ )

}
1κ ,

(11)

where E(κν)
xi ≡ RTκγ P

T
κγ→IBIN

(κ)
I ,xi

Pνγ→IRνγ as defined in Sect. 3.6. The second term is an

approximation of
∂Fxi
∂xi

at the volume nodes (see Sect. 3.5), while the right-hand side is a
penalty method that weakly imposes inter-element conditions. To populate Fxi (uκ , uν) we
require the evaluation of entropy-conservative fluxes between all volume nodes in S�κ and
S�ν .

Remark 1 On a conforming grid, the interface extrapolation operators Pκγ→I and Pνγ→I in

E(κν)
xi ≡ RTκγ P

T
κγ→IBIN

(κ)
I ,xi

Pνγ→IRνγ and in E(κκ)
xi ≡ RTκγ P

T
κγ→IBIN

(κ)
I ,xi

Pκγ→IRκγ simplify
to the identity matrices and the scheme in Crean et al. [11] is recovered.

The (algebraically equivalent) weak form of (11) is obtained by multiplying by a test
function vκ ∈ R

m·Nκ and integrating by parts (i.e. using Qxi = Exi − QT
xi ):

vTκ H̃
duκ

dt
−

d∑

i=1

vTκ

(
2Q̃

T
xi ◦ Fxi (uκ , uκ )

)
1κ

= −
∑

κγ

d∑

i=1

vTκ

{
Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

}
1ν

−
d∑

i=1

vTκ

{
Ẽxi ◦ Fxi (uκ , uκ )

}
1κ , ∀ vκ ∈ R

m·Nκ .

(12)

Finally, using the skew-symmetric matrix Sxi = −QT
xi + 1

2Exi and removing vκ , a third
equivalent, but more compact, form is obtained:

H̃
duκ

dt
+

d∑

i=1

(
2S̃xi ◦ Fxi (uκ , uκ )

)
1κ = −

∑

κγ

d∑

i=1

{
Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

}
1ν . (13)
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4.2 Pointwise-Coupling Entropy-Conservative Scheme

To obtain the pointwise-coupling entropy-conservative scheme, we replace the inter-element
coupling term of the dense-coupling entropy-conservative scheme by that of Chan [10].11

Doing so, we enable a pointwise coupling between neighbouring elements. The strong form
of the pointwise-coupling entropy-conservative scheme seeks, for an arbitrary element κ , the
solution uκ ∈ R

m·Nκ such that

duκ

dt
+

d∑

i=1

(
2D̃xi ◦ Fxi (uκ , uκ )

)
1κ

= −
∑

κγ

d∑

i=1

H̃
−1
{
Ẽ
(κ I )
xi ◦ Fxi (uκ , uκ I )

}
1I

+
∑

κγ

d∑

i=1

H̃
−1

R̃
T
κγ P̃

T
κγ→I

{(
Ẽ
(κ I )
xi

)T ◦ Fxi (uκ I , uκ )

}
1κ

−
∑

κγ

d∑

i=1

H̃
−1

Ẽ
(κ I )
xi f ∗,EC

xi (uκ I , uν I )

+
d∑

i=1

H̃
−1
{
Ẽxi ◦ Fxi (uκ , uκ )

}
1κ ,

(14)

where E(κ I )
xi ≡ RTκγ P

T
κγ→IBIN

(κ)
I ,xi

as defined in Sect. 3.6, and the entries of f ∗,EC
xi (uκ I , uν I ) ∈

R
m·NI , uκ I ∈ R

m·NI , and uν I ∈ R
m·NI are defined as

[ f ∗,EC
xi (uκ I , uν I )]l = F∗,EC

xi ([uκ I ]l , [uν I ]l ), ∀ l ∈ {1, . . . , NI },
[uκ I ]l ≡ U

(
[wκ I ]l

)
, [uν I ]l ≡ U

(
[wν I ]l

)
, ∀ l ∈ {1, . . . , NI },

[wκ I ]l ≡ [P̃κγ→I R̃κγ wκ ]l , and [wν I ]l ≡ [P̃νγ→I R̃νγ wν ]l , ∀ l ∈ {1, . . . , NI }.

The entries ofwκ ∈ R
m·Nκ andwν ∈ R

m·Nν are the entropy variables evaluated at the volume
nodes of element κ and ν, respectively. In essence, uκ I ∈ R

m·NI and uν I ∈ R
m·NI are the

conservative variables corresponding to the extrapolated entropy variables wκ I ∈ R
m·NI

and wν I ∈ R
m·NI , respectively12. These are important to ensure that Tadmor’s condition

(condition 1 of Definition 3) can be invoked when showing entropy conservation. The first
two terms on the right-hand side of (14), which couple the volume nodes of element κ with the
intermediate interface nodes, are nearly the negative of the transpose of each other. As it will
be shown in Sect. 5, this structure is critical for the conservation and entropy conservation
properties of the scheme and enables the scheme to couple neighbouring elements in a
pointwise manner via the third term on the right-hand side of (14). Again, multiplying by a
test function vκ ∈ R

m·Nκ and integrating by parts, we obtain the weak form:

11 InRef. [10], the author uses “decoupled”SBPoperatorswhich can be viewed as a superset of the (collocated)
SBP operators used in this paper.
12 uκ I and uν I are generally not equal to the extrapolated conservative variables.
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vTκ H̃
duκ

dt
−

d∑

i=1

vTκ

(
2Q̃

T
xi ◦ Fxi (uκ , uκ )

)
1κ

= −
∑

κγ

d∑

i=1

vTκ

{
Ẽ
(κ I )
xi ◦ Fxi (uκ , uκ I )

}
1I

+
∑

κγ

d∑

i=1

vTκ R̃
T
κγ P̃

T
κγ→I

{(
Ẽ
(κ I )
xi

)T ◦ Fxi (uκ I , uκ )

}
1κ

−
∑

κγ

d∑

i=1

vTκ Ẽ
(κ I )
xi f ∗,EC

xi (uκ I , uν I )

−
d∑

i=1

vTκ

{
Ẽxi ◦ Fxi (uκ , uκ )

}
1κ , ∀ vκ ∈ R

m·Nκ .

(15)

Finally, using Sxi = −QT
xi + 1

2Exi and removing vκ , the compact form is obtained:

H̃
duκ

dt
+

d∑

i=1

(
2S̃xi ◦ Fxi (uκ , uκ )

)
1κ = −

∑

κγ

d∑

i=1

{
Ẽ
(κ I )
xi ◦ Fxi (uκ , uκ I )

}
1I

+
∑

κγ

d∑

i=1

R̃
T
κγ P̃

T
κγ→I

{(
Ẽ
(κ I )
xi

)T ◦ Fxi (uκ I , uκ )

}
1κ

−
∑

κγ

d∑

i=1

Ẽ
(κ I )
xi f ∗,EC

xi (uκ I , uν I ).

(16)

Remark 2 When using diagonal-E SBP operators, both (13) and (16) reduce to Carpenter et
al.’s [20] or Chen and Shu’s [9] schemes on conforming quadrilateral and simplex grids,
respectively. This can be shown by using the Kronecker delta property of the extrapolation
operators Rγ and by noting that the interface extrapolation operators Pγ→I simplify to the
identity matrix.

4.3 Entropy Dissipative Term

We follow the approach of Ref. [11] and add the following interface entropy dissipative
term to the right-hand side of the entropy-conservative schemes (13) and (16) such that the
resulting schemes are entropy stable:

−
∑

κγ

R̃
T
κγ P̃

T
κγ→I B̃II (uκ I , uν I ; n(κ)

I )(wκ I − wν I ), (17)

where the extrapolated solutions on the intermediate interface uκ I ∈ R
m·NI and uν I ∈ R

m·NI

are defined as uκ I ≡ P̃κγ→I R̃κγ uκ and uν I ≡ P̃νγ→I R̃νγ uν respectively, n(κ)
I holds

the outward-pointing normal unit vector at each of the intermediate interface nodes in SI
(with respect to element κ), and I (uκ I , uν I ; n(κ)

I ) ∈ R
m·NI×m·NI is a block-diagonal

symmetric positive semidefinite matrix satisfying the property I (uκ I , uν I ; n(κ)
I ) =

I (uν I , uκ I ; n(ν)
I ).
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4.4 Diagonal-E Entropy-Conservative Scheme

In this subsection, we show that the non-conforming method of Refs. [28,35] on affine
meshes is a subset of the dense-coupling entropy-conservative scheme. Using our notation,
the diagonal-E entropy-conservative scheme used in Refs. [28,35] is written as

H̃
duκ

dt
−

d∑

i=1

(
2Q̃

T
xi ◦ Fxi (uκ , uκ )

)
1κ

= −
∑

κγ

d∑

i=1

R̃
T
κγ Ñκγ,xi B̃κγ

(
P̃νγ→κγ ◦ Fxi (uκγ , uνγ )

)
1νγ

−
∑

κγ

d∑

i=1

(
(R̃

T
κγ Ñκγ,xi B̃κγ R̃κγ ) ◦ Fxi (uκ , uκ )

)
1κ ,

(18)

for an arbitrary element κ , where uκγ ∈ R
m·Nκγ and uνγ ∈ R

m·Nνγ are the facet extrapo-
lated solutions, Nκγ,xi ≡ nγ,xi INκγ , and Pνγ→κγ ∈ R

Nκγ ×Nνγ is an operator which projects
functions from the facet nodal set Sνγ onto the facet nodal set Sκγ . These are defined as
uκγ ≡ R̃κγ uκ , uνγ ≡ R̃νγ uν , and

Pνγ→κγ ≡ PI→κγ Pνγ→I , (19)

where PI→κγ ∈ R
Nκγ ×NI satisfies [26–28,33,35]

Bκγ PI→κγ = PTκγ→IBI . (20)

Property (20) is crucial for the entropy conservation and element-wise conservation
properties of the diagonal-E entropy-conservative scheme (18). Note that, unlike the entropy-
conservative schemes (12) and (15) for which inter-element coupling is performed using the
intermediate interface nodal set SI , (18) uses the matrices Pνγ→κγ and Bκγ to couple the
element κ with its neighbours on its facet nodal set Sκγ . Similarly, each of its neighbours,
e.g. ν, perform the inter-element coupling on their facet nodal set, e.g. Sνγ .

Theorem 1 When using SBP operators equipped with facet quadrature rules of degree sκ ≥
2rκ (≥ 2pκ ), ∀ �κ ∈ Th, the entropy-conservative scheme (18) is a subset of the dense-
coupling entropy-conservative scheme (13) on affine meshes.

Proof The proof is shown in Appendix B. ��

4.5 Algorithm Implementation

Here we summarize the steps that can be followed in order to implement the dense-coupling
and pointwise-coupling semi-discrete schemes. For a given element κ:

1. Construct the degree pκ reference SBP operators, namely Ĥ, Rκγ , Êξi , and Q̂ξi in all
spatial directions, as explained in Sect. 3.1.1.

2. For each neighbouring element ν with shared facet γ :

(a) Construct the extrapolation operator Rνγ as explained in Sect. 3.1.1.
(b) Construct the reference interface operators B̂I , Pκγ→I , and Pνγ→I following Sect.

3.2’s explanation.
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3. Using the (defined) geometric polynomial mapping function, compute the physical SBP
operators, namely BI , N

(κ)
I ,xi

, Exi , H, and Sxi , as explained in Sect. 3.3.
4. Store the volumetric discretization term in the spatial residual term [rκ ] j ∈ R

m, ∀ j ∈
{1, . . . , Nκ }:

[rκ ] j = 2

[H] j j
d∑

i=1

Nκ∑

k=1

[Sxi ] jkF∗,EC
xi ([uκ ] j , [uκ ]k).

5. For the dense-coupling scheme (13), add the inter-element coupling term to the residual
term:

[rκ ] j = [rκ ] j + 1

[H] j j
∑

κγ

d∑

i=1

Nν∑

l=1

[E(κν)
xi ] jlF∗,EC

xi ([uκ ] j , [uν]l), ∀ j ∈ {1, . . . , Nκ },

where E(κν)
xi ≡ RTκγ P

T
κγ→IBIN

(κ)
I ,xi

Pνγ→IRνγ .
For the pointwise-coupling scheme (16), add the inter-element coupling term to the
residual term:

[rκ ] j = [rκ ] j + 1

[H] j j
∑

κγ

d∑

i=1

NI∑

l=1

[E(κ I )
xi ] jlF∗,EC

xi ([uκ ] j , [uκ I ]l)

− 1

[H] j j
∑

κγ

d∑

i=1

NI∑

l=1

Nκ∑

k=1

[Pκγ→IRκγ ]l j [E(κ I )
xi ]klF∗,EC

xi ([uκ I ]l , [uκ ]k)

+ 1

[H] j j
∑

κγ

d∑

i=1

NI∑

l=1

[E(κ I )
xi ] jlF∗,EC

xi ([uκ I ]l , [uν I ]l), ∀ j ∈ {1, . . . , Nκ },

where E(κ I )
xi ≡ RTκγ P

T
κγ→IBIN

(κ)
I ,xi

and the vectors uκ I and uν I are defined in Sect. 5.2.
6. If dissipation is required, augment the spatial residual term by the interface term (17):

[rκ ] j = [rκ ] j

+
∑

κγ

NI∑

l=1

[Pκγ→IRκγ ]l j [BI ]llI ([uκ I ]l , [uν I ]l; [n(κ)
I ]l)([wκ I ]l − [wν I ]l),

∀ j ∈ {1, . . . , Nκ },
where the matrix I (·, ·; ·) is positive semidefinite, the vectors uκ I and uν I are defined
in Sect. 5.3, and the vectors wκ I and wν I in Sect. 5.2.

Once the spatial residual term has been computed for all elements in the tessellation, a
time-marching method can be used to solve the resulting ordinary differential equations:

duκ

dt
+ rκ = 0κ , ∀ �κ ∈ Th .

5 Theoretical Analysis

In this section, we prove that both the dense-coupling and pointwise-coupling semi-discrete
schemes locally and, consequently, globally conserve the conservative variables and entropy.
Furthermore, we prove that the methods are design-order accurate. Finally, we demonstrate
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that the interface stabilization term dissipates entropy while maintaining the conservation
and accuracy properties of the original schemes. We note that some of the proofs are the
same as the ones shown in Crean et al. [11], while others follow their work and the work of
Chan [10].

5.1 Dense-Coupling Entropy-Conservative Scheme

5.1.1 Conservation

For the schemes in this paper to accurately simulate flows with discontinuities, they must be
consistent and conservative such that, if convergent, they converge to a weak solution as per
the Lax–Wendroff theorem [51]. To show conservation of (13), we integrate over element κ
by contracting the equation with the vector 1κ and deal with only one equation at a time. For
instance, for the continuity equation, we have

1TκH
dρκ

dt
+

d∑

i=1
1Tκ

(
2Sxi ◦ F(ρ)

xi (uκ , uκ )

)
1κ = −∑

κγ

d∑

i=1
1Tκ

{
E(κν)
xi ◦ F(ρ)

xi (uκ , uν)

}
1ν,

(21)

where ρκ ∈ R
Nκ holds the density at the volume nodes of element κ and F(ρ)

xi (·, ·) holds
the rows and columns of Fxi (·, ·) associated to the continuity equation. Theorem 2 concerns
the element-wise conservation property of the dense-coupling entropy-conservative scheme,
while Theorem 3 concerns its global conservation property.

Theorem 2 Scheme (13) is element-wise conservative. For instance, the discrete integral of
the continuity equation over element κ is

1TκH
dρκ

dt
= −

∑

κγ

d∑

i=1

1Tκ

{
E(κν)
xi ◦ F(ρ)

xi (uκ , uν)

}
1ν,

which states that the time rate of change of mass inside element κ is equal to the net mass
flow rate through its boundaries.

Proof The proof follows directly from Lemma 2 in Appendix C, and is similar to that given
by Crean et al. [11] for their Theorem 3. ��
Theorem 3 Scheme (13) is globally conservative. For instance, with periodic boundary con-
ditions, the discrete integral of the continuity equation over the domain simplifies to

∑

�κ∈Th
1TκHκ

dρκ

dt
= 0.

Proof The proof is given in Appendix C. ��

5.1.2 Entropy Conservation

To show that scheme (13) conserves entropy, we left-multiply the PDEs by the entropy
variables and integrate over element κ , which is equivalent to contracting (13) with the
entropy variables wκ to obtain

wT
κ H̃

duκ

dt
+

d∑

i=1

wT
κ

(
2S̃xi ◦ Fxi (uκ , uκ )

)
1κ = −

∑

κγ

d∑

i=1

wT
κ

{
Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

}
1ν . (22)
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Theorems 4 and 5 concern the element-wise and global entropy conservation properties of
the scheme, respectively.

Theorem 4 Scheme (13) is element-wise entropy conservative in the sense that (22) simplifies
to

1TκH
dsκ
dt

= −
∑

κγ

d∑

i=1

wT
κ

{
Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

}
1ν +

d∑

i=1

1Tκ Exi ψκ,xi ,

where sκ ∈ R
Nκ and ψκ,xi ∈ R

Nκ are the entropy and the potential flux in the xi -direction
at the volume nodes of element κ , respectively. Only the surface terms contribute to the net
change of entropy, similar to the continuous case.

Proof The proof is shown in Crean et al. [11]. It also follows directly from Lemmas 3 and 4
in Appendix D. ��
Theorem 5 Scheme (13) globally conserves entropy. For instance, with periodic boundary
conditions,

∑

�κ∈Th
1TκHκ

dsκ
dt

= 0.

Proof The proof directly follows from Exi = ∑
κγ E(κκ)

xi , Theorem 4 and Lemma 5 in
Appendix D. ��

5.1.3 Design-Order Accuracy

To show that the dense-coupling entropy-conservative scheme is design-order accurate, we
deal with its strong form equation (11). We invoke Theorem 1 of Ref. [11] to prove that the
spatial derivative term in (11) is design-order accurate. Theorem 6 concern the accuracy of
the penalty term in (11).

Theorem 6 The penalty term on the right-hand side of (11) is at least design-order accurate.
More precisely, for U ∈ Crmin+1(� × I , R

m), the following relation is satisfied:
[{

Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

}
1ν −

{
Ẽ
(κκ)

xi ◦ Fxi (uκ , uκ )

}
1κ

]

j

= O(hrmin
max), ∀ i ∈ {1, . . . , d}, j ∈ {1, . . . , Nκ },

where rmin ≡ min(rκ , rν), hmax ≡ max(hκ , hν), hκ ≡ maxx j ,xk∈Sκ ||x j − xk ||2, and
hν ≡ maxx j ,xk∈Sν ||x j − xk ||2.
Proof The proof is shown in Appendix D.2. ��

5.2 Pointwise-Coupling Entropy-Conservative Scheme

5.2.1 Conservation

To show that (16) is conservative, similar to the dense-coupling entropy-conservative scheme,
we contract it with the vector 1κ and deal with each equation separately. For the continuity
equation, we have
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1TκH
dρκ

dt
+

d∑

i=1

1Tκ

(
2Sxi ◦ F(ρ)

xi (uκ , uκ )

)
1κ

= −
∑

κγ

d∑

i=1

1Tκ

{
E(κ I )
xi ◦ F(ρ)

xi (uκ , uκ I )

}
1I

+
∑

κγ

d∑

i=1

1TκR
T
κγ P

T
κγ→I

{(
E(κ I )
xi

)T ◦ F(ρ)
xi (uκ I , uκ )

}
1κ

−
∑

κγ

d∑

i=1

1Tκ E
(κ I )
xi f ∗,EC,ρ

xi (uκ I , uν I ),

(23)

where f ∗,EC,ρ(·, ·) holds the elements in f ∗,EC(·, ·) associated to the continuity equation.
Theorem 7 addresses the element-wise conservation property of the pointwise-coupling
entropy-conservative method, while Theorem 8 addresses its global conservation property.

Theorem 7 Scheme (16) is element-wise conservative. For instance, the discrete integral of
the continuity equation over element κ is

1TκH
dρκ

dt
= −

∑

κγ

d∑

i=1

1Tκ E
(κ I )
xi f ∗,EC,ρ

xi (uκ I , uν I ).

Proof The proof is shown in Appendix F. ��
Theorem 8 Scheme (16) is globally conservative. For instance, with periodic boundary con-
ditions, the discrete integral of the continuity equation over the domain simplifies to

∑

�κ∈Th
1TκHκ

dρκ

dt
= 0.

Proof The proof is shown in Appendix F. ��

5.2.2 Entropy Conservation

To show that (16) is entropy conservative, we contract it with the entropy variableswκ , which
is equivalent to multiplying the PDEs by the entropy variables and integrating over element
κ:

wT
κ H̃

duκ

dt
+

d∑

i=1

wT
κ

(
2S̃xi ◦ Fxi (uκ , uκ )

)
1κ

= −
∑

κγ

d∑

i=1

wT
κ

{
Ẽ
(κ I )
xi ◦ Fxi (uκ , uκ I )

}
1I

+
∑

κγ

d∑

i=1

wT
κ R̃

T
κγ P̃

T
κγ→I

{(
Ẽ
(κ I )
xi

)T ◦ Fxi (uκ I , uκ )

}
1κ

−
∑

κγ

d∑

i=1

wT
κ Ẽ

(κ I )
xi f ∗,EC

xi (uκ I , uν I ).

(24)
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Theorems 9 and 10 concern the element-wise and global conservation properties of the
scheme, respectively.

Theorem 9 Scheme (16) is element-wise entropy conservative in the sense that (24) simplifies
to

1TκH
dsκ
dt

= −
∑

κγ

d∑

i=1

wT
κ I Ñ

(κ)

I ,xi B̃I f
∗,EC
xi (uκ I , uν I ) +

∑

κγ

d∑

i=1

1TI N
(κ)
I ,xi

BIψκ I ,xi ,

where [ψκ I ,xi ]l ≡ ψxi

([uκ I ]l
)
, ∀ l ∈ {1, . . . , NI } is the potential flux vector in the xi -

direction corresponding to the extrapolated entropy variables wκ I .

Proof The proof follows directly from Lemmas 3 and 4 in Appendix D, and Lemma 6 in
Appendix G. ��
Theorem 10 Scheme (16) globally conserves entropy. For instance, with periodic boundary
conditions,

∑

�κ∈Th
1TκHκ

dsκ
dt

= 0,

Proof The proof is shown in Appendix G. ��

5.2.3 Design-Order Accuracy

For the accuracy proof of the pointwise-coupling entropy-conservative scheme, we deal with
its strong form (14). We invoke Theorem 1 of Ref. [11] for the accuracy of the volumetric
terms. Theorem 11 concerns the accuracy of the penalty term.

Theorem 11 The penalty term on the right-hand side of (14) is at least design-order accurate.
More precisely, for U ∈ Crmin+1(� × I , R

m), W ∈ Crmin+1(H, R
m), the following relation

holds:
[

−
{
Ẽ
(κ I )
xi ◦ Fxi (uκ , uκ I )

}
1I + R̃

T
κγ P̃

T
κγ→I

{(
Ẽ
(κ I )
xi

)T ◦ Fxi (uκ I , uκ )

}
1κ

− Ẽ
(κ I )
xi f ∗,EC

xi (uκ I , uν I ) +
{
Ẽ
(κκ)

xi ◦ Fxi (uκ , uκ )

}
1κ

]

j

= O(hrmin
max), ∀ ∈ {1, . . . , d}, j ∈ {1, . . . , Nκ },

where, as previously defined, rmin ≡ min(rκ , rν) and hmax ≡ max(hκ , hν).

Proof The proof is shown in Appendix H. ��

5.3 Entropy Dissipative Term

As previously mentioned, the dissipative interface term (17) can be added to the right-hand
side of both entropy-conservative schemes (13) and (16) to obtain entropy-stable schemes.
Here we show that the interface term (17) is conservative, entropy dissipative, and design-
order accurate in Theorems 12, 13, and 14, respectively.
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5.3.1 Conservation

Theorem 12 The dissipative term (17) maintains the conservation property of the original
schemes. For instance, for the continuity equation, at a given interface shared by two neigh-
bouring elements κ and ν,

1TκR
T
κγ P

T
κγ→II (uκ I , uν I ; n(κ)

I )(ρ)B̃I (wκ I − wν I )

+ 1Tν R
T
νγ P

T
νγ→II (uν I , uκ I ;N(ν)

I )(ρ)B̃I (wν I − wκ I ) = 0,

where I (uκ I , uν I ; n(κ)
I )(ρ) and I (uν I , uκ I ; n(ν)

I )(ρ) respectively hold the rows of

I (uκ I , uν I ; n(κ)
I ) and I (uν I , uκ I ; n(ν)

I ) corresponding to the continuity equation.

Proof The proof is shown in Appendix I. ��

5.3.2 Entropy Dissipation

Theorem 13 The term (17) dissipates entropy at each interface, i.e.

− wT
κ R̃

T
κγ P̃

T
κγ→II (uκ I , uν I ; n(κ)

I )B̃I (wκ I − wν I )

− wT
ν R̃

T
νγ P̃

T
νγ→II (uν I , uκ I ; n(ν)

I )B̃I (wν I − wκ I ) ≤ 0.

Proof The proof is shown in Appendix J and follows from the fact that the interface term
penalizes the jump in entropy. ��

5.3.3 Design-Order Accuracy

Theorem 14 The dissipative term (17) maintains the design-order accuracy of the original
schemes. More precisely, forW ∈ Crmin+1(H, R

m), the following relation holds:

R̃
T
κγ P̃κγ→II (uκ I , uν I ; n(κ)

I )B̃I (wκ I − wν I ) = O(hrmin
max),

where as previously defined, rmin ≡ min(rκ , rν) and hmax ≡ max(hκ , hν).

Proof The proof is shown in Appendix K. ��

6 Results

In this section, we numerically validate the conservation, entropy conservation/dissipation,
and design-order accuracy properties of both schemes. Furthermore, we compare the schemes
in terms of robustness and efficiency.

6.1 Solver Settings

The traditional explicit fourth-order Runge–Kutta time-marching method [52] is used to
evolve the solution in time with a sufficiently small CFL condition to ensure that the tem-
poral discretization errors are negligible compared to the spatial discretization errors. Ismail
and Roe’s [53] entropy-conservative flux is used with the extended Taylor series expansion
proposed in Ref. [11] to compute logarithms of values near zero. This numerical flux satisfies
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Fig. 3 Two examples of coarse non-conforming curved gridswith hanging nodes and different degree operators

Definition 3, as it was shown to be continuously differentiable in Ref. [11] for conservative
variables with positive density and pressure. A matrix-type interface dissipation term is used
by defining the symmetric positive semi-definite matrix of (17) as RTDR, where R has as
its columns the right eigenvectors of the Jacobian of the Ismail and Roe flux in the normal
direction, and D is the diagonal matrix of the absolute values of the corresponding scaled
eigenvalues (both of which are defined in Ref. [53]).

To generate a curvilinear grid with non-conforming interfaces, we first randomly assign
different degree p operators (e.g. from p = 1 to p = 4) to the elements of a conforming
affine mesh and then randomly isotropically subdivide some of the elements. Finally, we
curve the grid using a geometric mapping function. An example of the outcome of this
procedure is shown in Fig. 3 for grids constructed with triangles and quadrilaterals. We use
the � SBP operators of Ref. [31] on triangular elements and the tensor-product LG operators
on quadrilateral and hexahedral elements.

6.2 Test Cases

6.2.1 Two-Dimensional Isentropic Vortex

A two-dimensional unsteady isentropic vortex problem with smooth solution is used for the
convergence and efficiency studies, and to show that the schemes are conservative and entropy
conservative/dissipative. The variant of the problem solved in this paper has the following
analytical solution [54]:

u1 = 1 − α

2π
(x2 − x (c)

2 )e1−r2 , u2 = α

2π

(
x1 − (x (c)

1 + t)

)
e1−r2 ,

ρ =
(
1 − α2(γ − 1)

16γπ2 e2(1−r2)
) 1

γ−1

, p = ργ ,

where r2 =
(
x1 − (x (c)

1 + t)

)2
+
(
x2 − x (c)

2

)2
. Here, we set the vortex strength to α = 3,

initially center the vortex at (x (c)
1 , x (c)

2 ) = (5, 0) on a (0, 20) × (−5, 5) domain, impose
periodic boundary conditions, and numerically solve the test case until t = T = 5. Note that
although the perturbation in the flow is not machine precision zero away from the vortex,
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the imposition of periodic boundary conditions introduces negligible error since the domain
is relatively large (we refer the interested reader to Section IV.B. of Ref. [55] for further
information).

The grids generated for this problem are curved using the perturbation function [32]

x1 = x̂1 + 1

8
cos

(
π

20
(x̂1 − 10)

)
cos

(
3π

10
x̂2

)
,

x2 = x̂2 + 1

8
sin

(
π

5
(x1 − 10)

)
cos

(
π

10
x̂2

)
,

where 	̂x represents the nodal coordinates of the affine meshes (i.e. before performing the
curvilinear mapping). Using the aforementioned perturbation function, we perturb the ele-
ments at the nodal coordinates coinciding with the nodes of degree l = 2 multidimensional
Lagrange finite elements. We then perform a degree l = 2 polynomial interpolation of these
nodal sets to the nodes of the SBP operators. Finally, we follow the approach of Sect. 3.3 to
construct the SBP operators on the physical elements. This procedure ensures that Assump-
tion 1 holds.

6.2.2 Three-Dimensional Isentropic Vortex

To verify the accuracy of the schemes for three-dimensional test cases, a three-dimensional
unsteady isentropic vortex problem with smooth solution, obtained from an extrusion of its
two-dimensional counterpart, is solved. In this work, the following analytical solution is used
[56]:

ρ =
(
1 − γ − 1

2
�2
) 1

γ−1

, 	u = 	u0 + �	r , e = 1

γ − 1

(
1 − γ − 1

2
�2
) γ

γ−1 + ρ

2
	uT 	u,

where � = 0.4e
1−	rT	r

2 , 	v0 = [0, 1, 0]T, and 	r = [−(x2 − t), x1, 0
]T
. We impose periodic

boundary conditions on a � ≡ (−10, 10)3 domain and numerically solve the test case until
t = T = 2.5. The grid used for this problem is curved using the perturbation function

xi = x̂i + 0.05 sin

(
π x̂i
2

)
, ∀ i ∈ {1, 2, 3},

at the nodes of degree l = 2 Lagrange elements, which satisfies Assumption 1 when all SBP
operators are at least degree p = 3.

6.2.3 Three-Dimensional Inviscid Taylor–Green Vortex

The viscous Taylor–Green vortex is often studied in the turbulence community, while its
inviscid counterpart is used to assess the robustness of discretization methods. The initial
three-dimensional vortices stretch and, over time, generate small eddies which do not decay
in the inviscid case due to the lack of viscosity. The flow is thus rendered under-resolved and
can pose stability issues for some numerical methods. The initial condition is given by [57]

ρ = 1, u1 = sin(x1) cos(x2) cos(x3), u2 = − cos(x1) sin(x2) cos(x3),

u3 = 0, p = 1

γ M2
0

+ 1

16

(
2 cos(2x1) + 2 cos(2x2)
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Fig. 4 Two-dimensional isentropic vortex test case. Conservation of mass, momentum, and energy on a coarse
non-conforming curved grid

+ cos(2x1) cos(2x3) + cos(2x2) cos(2x3)

)
,

on a (−π, π)3 periodic domain. Here, the Mach number is set to M0 = 0.1 and the solution
is solved until t = T = 20. Furthermore, the grid is curved according to [40]

xi = x̂i + 1

8
sin(x̂1) sin(x̂2) sin(x̂3), ∀ i ∈ {1, 2, 3},

at the nodes of degree l = 2 Lagrange elements, which satisfies Assumption 1 when all SBP
operators are at least degree p = 3.

6.3 Conservation

As previously mentioned, it is important to ensure that the schemes developed in this work
are conservative in the Lax–Wendroff sense [51] such that they can be used to simulate flows
with discontinuities. In Fig. 4, we plot the evolution of the conservation metrics defined as

∑

�κ∈Th
1TκHκ

(
ρκ (t) − ρκ (t = 0)

)
,
∑

�κ∈Th
1TκHκ

(
(ρu1)κ (t) − (ρu1)κ (t = 0)

)
,

∑

�κ∈Th
1TκHκ

(
(ρu2)κ (t) − (ρu2)κ (t = 0)

)
,
∑

�κ∈Th
1TκHκ

(
(e)κ (t) − (e)κ (t = 0)

)
, ∀ t ∈ I ,

for the two-dimensional isentropic vortex test case, which are the discrete analogue to indi-
vidually integrating the difference in the conservative variables over the domain. The results,
obtained for a coarse curved grid with 4× 4× 2 triangular elements (before the random hp-
refinement procedure) with degree p = 1 to p = 4 operators, show that mass, momentum,
and energy are conserved (up to machine precision zero) for both entropy-stable schemes
on non-conforming curved grids. A coarse grid is used to emphasize that the conservation
property of these schemes holds for arbitrarily coarse grids and not only in the limit of mesh
refinement. Similar results were obtained for the entropy-conservative schemes.
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Fig. 5 Two-dimensional isentropic vortex test case. Conservation and dissipation of entropy on a coarse
non-conforming curved grid

Table 1 Two-dimensional isentropic vortex test case. Entropy generated by the dense- and pointwise-coupling
entropy-stable schemes on coarse and fine curved grids.

Grid Degree of operators Entropy at time T
dense-coupling Pointwise-coupling

Coarse (4 × 4 × 2 elements) 1, 2, 3, 4 −0.430 −0.428

Fine (10 × 10 × 2 elements) 3, 4 −0.035 −0.030

6.4 Entropy Conservation and Dissipation

Figure 5 shows the evolution of the discrete approximation to the integral of the entropy
computed as

∑

�κ∈Th
1TκHκ sκ (t), ∀ t ∈ I ,

over time for the two-dimensional isentropic vortex problem on a curved grid with 4× 4× 2
triangular elements (before the random hp-refinement procedure) and degree p = 1 to
p = 4 operators. The results show that both entropy-conservative methods (13) and (16)
conserve entropy and, when augmented with the interface stabilization term (17), dissipate
entropy on non-conforming curved meshes. Both entropy-stable schemes dissipate entropy
in a similar manner since they utilize the same dissipative term. Once again, a coarse grid is
used to show that the entropy conservation and dissipation properties of these schemes hold
for arbitrarily coarse grids. Furthermore, the significant dissipative behaviour is primarily
because a coarse grid is used in which approximately half the elements are associated with
relatively low-degree (p = 1 and p = 2) operators. On a finer curved grid with 10× 10× 2
elements (before the random hp-refinement procedure) and only p = 3 and p = 4 operators,
we observed a decay in entropy of 92% and 93% for the dense- and pointwise-coupling
entropy-stable schemes, respectively (see Table 1).
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Fig. 6 Two-dimensional
isentropic vortex test case.
Convergence of entropy
generation as a function of the
CFL on a curved non-conforming
grid (the convergence rates of the
three smallest time steps are
provided)
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While we observed in Fig. 5 that the entropy-conservative methods conserve entropy, the
entropy generated at the fully-discrete level is not machine precision zero since the fourth-
order Runge–Kutta time-marching method is not entropy-conservative. Figure 6 shows the
entropy generation on a non-conforming curved gridwith 4×4×2 triangular elements (before
the random hp-refinement procedure) for both entropy-conservative schemes as a function
of the CFL. The results demonstrate that the entropy generated by the time-marching method
converges to zero at a rate of O(�t4.9), where �t is the time step. Similar convergence rates
have also been observed for conforming schemes [10,11,40].

6.5 Accuracy and Efficiency

6.5.1 Two-Dimensional Test Cases

We test the accuracy of the schemes on non-conforming curved grids arising from h-, p-,
and hp-refinement. We first generate a sequence of affine meshes with n element edges in
each direction where n ∈ {25, 50, 75, 100, 125}. For hp-refinement, as before, we randomly
assign different degree p operators to the elements (from p = 1 to p = 4), then randomly
isotropically subdivide some of the elements, and curve the grids. For p-refinement, we
randomly assign different degree p operators to the elements (from p = 1 to p = 4) and
curve the grids. Finally, for h-refinement, we assign a constant degree p operator (p = 1,
p = 2, p = 3, or p = 4), then randomly isotropically subdivide some of the elements,
and curve the grids. This set of grids is then used to perform convergence studies of the
entropy-conservative and entropy-stable schemes. Figures 7 and 8 show the L2 error in the
conservative variables, i.e.

√√√√
∑

�κ∈Th

(
||ρκ − ρκ,exact||22 + ||eκ − eκ,exact||22 +

d∑

i=1

||(ρui )κ − (ρui )κ,exact||22
)

,
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Fig. 7 Two-dimensional isentropic vortex test case. Convergence studies of the entropy-conservative schemes
on curved non-conforming grids (the convergence rates of the three finest grids are provided)
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Fig. 8 Two-dimensional isentropic vortex test case. Convergence studies of the entropy-stable schemes on
curved non-conforming grids (the convergence rates of the three finest grids are provided)

versus themesh spacing (1/n) for the two-dimensional isentropic vortex problem.To compute
the L2 solution error, we interpolate the solutions from the SBP nodes onto the nodes of a
cubature rule of degree 3pκ + 1 for each element κ in the tessellation, and then integrate the
square of the solution error over the domain. The convergence rates calculated from the least
squares regression line of the 3 finest grids are also shown in the figures.

The results show that the entropy-stable schemes generally achieve pmin + 1 asymptotic
convergence rates, with the lowest convergence rate being pmin + 0.69. The entropy-
conservative schemes converge at rates between pmin and pmin + 1 with the exception of
the dense-coupling entropy-conservative scheme with p = 4 LG and � operators on the
h-refinement grid, which converge at a rate slightly higher than pmin + 1. Convergence rates
between p and p + 1 have also been observed for entropy-conservative and entropy-stable
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Fig. 9 Two-dimensional isentropic vortex test case. Efficiency study of the entropy-conservative and entropy-
stable schemes on curved non-conforming grids

schemes on conforming grids (e.g. [11,20,21]) and on staggered grids (e.g. [27]). Moreover,
the dense-coupling and pointwise-coupling schemes achieve comparable errors on a given
grid. Finally, the LG operators attain slightly lower errors than the � operators for a given
mesh spacing.

The purpose of the efficiency study performed in this paper is simply to compare the
dense-coupling scheme to the pointwise-coupling scheme (and not to compare tensor-product
operatorswithmultidimensional operators). Figure 9 shows the L2 solution error as a function
of the normalized average spatial residual computation time for one time step. In this plot,
“EC” represents entropy-conservative, “SS” entropy-stable, “DC” dense-coupling scheme,
and “PC”pointwise-coupling scheme. The results show that the pointwise-coupling scheme is
computationally more efficient than the dense-coupling scheme: while both methods achieve
similar errors, the pointwise-coupling scheme requires fewer entropy-conservative flux func-
tions to couple neighbouring elements since it does not fully couple their volume nodes. The
efficiency benefit provided by the pointwise-coupling scheme is even more pronounced for
three-dimensional problems since the number of volume nodes per element for a given degree
p scales as O(pd), where d is the number of dimensions. Finally, augmenting the entropy-
conservative schemes with the entropy dissipative term considerably improves the accuracy
of the schemes with a negligible impact on computational time.

6.5.2 Three-Dimensional Test Cases

We also verify that the accuracy properties of the schemes generalize to three-dimensional
problems by randomly hp-refining a sequence of hexahedral curved grids with n element
edges in each direction, where n ∈ {15, 25, 35, 45}, and degree p = 3 and p = 4 tensor-
product LG operators for the three-dimensional isentropic vortex problem. Similar to the
two-dimensional scenario, the convergence rate is between pmin and pmin+1 for the entropy-
conservative schemes and approximately pmin + 1 for the entropy-stable schemes as shown
in Fig. 10.
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Fig. 10 Three-dimensional
isentropic vortex test case.
Convergence studies of the
entropy-conservative and
entropy-stable schemes on curved
non-conforming grids (the
convergence rates of the three
finest grids are provided)
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Fig. 11 Inviscid Taylor–Green vortex test case. Evolution of entropy and kinetic energy over time using both
entropy-conservative schemes on a coarse curved non-conforming grid

6.6 Robustness

Gassner et al. [21] numerically showed the robustness benefit of kinetic-energy-preserving,
entropy-conservative, and entropy-stable methods over standard DG spectral-element meth-
ods. Fig. 11a shows that both entropy-conservative methods (without interface dissipation)
are stable for the inviscid Taylor–Green vortex test case on a coarse curved grid with 4×4×4
hexahedral elements (before the random hp-refinement procedure) and degree p = 3 and
p = 4 tensor-product LG operators, similar to the entropy-conservative schemes used in
Ref. [21] on conforming grids. Since the schemes utilize the Ismail and Roe numerical flux,
which is not kinetic-energy-preserving in the sense of Jameson [58], kinetic energy is not
conserved as shown in Fig. 11b.
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7 Conclusions

We presented two entropy-stable semi-discrete schemes for hyperbolic conservation laws
applicable to curved non-conforming grids caused by h-, p-, or hp-adaptivity: one is char-
acterized by dense coupling, the other by pointwise coupling. Both methods are compatible
with any degree p diagonal-norm SBP operator equipped with degree 2p or higher interface
quadrature rules, such as the collocated DG operators constructed on the tensor-product LG
nodes and the multidimensional � SBP operators of Ref. [31]. The conservation, entropy
conservation/dissipation, and accuracy properties of the schemes were first theoretically
proven and then numerically validated. Similar to their conforming counterparts, the non-
conforming schemes are stable for the inviscid Taylor–Green vortex problem on a coarse
curved grid without any interface dissipation. The “pointwise-coupling” scheme was shown
to be computationallymore efficient than the “dense-coupling” scheme, since the former cou-
ples neighbouring elements only at interface nodes,whereas the latter performs the coupling at
the volume nodes. Furthermore,we showed that the entropy-conservativemethod of Friedrich
et al. [28] applicable on non-conforming affine meshes and compatible with tensor-product
SBP operators with boundary nodes is a subset of the dense-coupling entropy-conservative
scheme (when the SBP operators are equipped with degree 2p or higher quadrature rules).
While in this paper we assumed periodic boundary conditions, other entropy-stable boundary
conditions developed primarily for tensor-product SBP operators with boundary nodes (e.g.
the ones in Refs. [8,59]) are compatible with the pointwise-coupling scheme evenwhen using
SBP operators without boundary nodes. The underlying reason is that this scheme, similar
to entropy-stable schemes compatible only with SBP operators with boundary nodes, can
weakly impose boundary conditions in a pointwise manner. A critical assumption made in
thiswork is the positivity of certain quantities, such as density and pressure for the Euler equa-
tions. Since this assumption can be violated in practice and thus undermine the robustness
of the algorithms, a recommendation for future research is to carefully integrate positivity-
preserving techniques, such as Zhang and Shu’s [60], in these non-conforming methods such
that the resulting schemes are both entropy stable and positivity preserving. Moreover, a
natural extension of the current work is to expand the theory to include the compressible
Navier-Stokes equations. The main challenge is to construct viscous inter-element coupling
terms between non-conforming curved elements that are compatible with SBP operators
without boundary nodes. Finally, we believe the results of this paper provide a sound founda-
tion for the development of tensor-product and multidimensional entropy-stable hp-adaptive
SBP methods driven by output-based a posteriori error estimates.

Acknowledgements Wewish to thankMasayuki Yano for insightful implementation recommendations about
grids with hanging nodes and David Del Rey Fernández for helpful discussions regarding the pointwise-
coupling termused in this paper.We also thank theAerospaceComputational EngineeringLab at theUniversity
of Toronto for the use of their software, the Automated PDE Solver (APS). Finally, we gratefully acknowledge
the financial support provided by the governments of Ontario and Canada. Computations were performed on
the Niagara supercomputer at the SciNet HPC Consortium [61]. SciNet is funded by: the Canada Foundation
for Innovation; the Government of Ontario; Ontario Research Fund - Research Excellence; and the University
of Toronto.

Appendix A Condition 2 of Definition 2

Here we show that condition 2 of Definition 2, i.e.
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RTκγ B̂κγ Rκγ = RTκγ P
T
κγ→I B̂IPκγ→IRκγ ,

RTνγ B̂νγ Rνγ = RTνγ P
T
νγ→I B̂IPνγ→IRνγ ,

holds under mild assumptions. For simplicity we show the proof for an arbitrary element and
thus drop the subscripts κ and ν.

Assumption 2 We assume that the reference element’s facet quadrature rule and the inter-
mediate reference interface’s facet quadrature rule exactly integrate polynomials of at least
degree s ≥ 2r . Furthermore, we assume that the volume nodal set S

�̂
and facet nodal set Sγ̂

produce degree r full-column-rank Vandermonde matrices V̂� ∈ R
N×nr and V̂γ ∈ R

Nγ ×nr ,
respectively.

Lemma 1 If Assumption 2 holds, then

RTγ B̂γ Rγ = RTγ P
T
γ→I B̂IPγ→IRγ .

Proof Let V̂ I ∈ R
NI×nr be the degree r Vandermonde matrix evaluated at the nodal set SÎ

(which does not necessarily coincide with Sγ̂ ). Since B̂I and B̂γ integrate polynomials of at

least degree s ≥ 2r and the Vandermonde matrices V̂γ and V̂ I are each of degree r , then

V̂
T
γ B̂γ V̂γ = V̂

T
I B̂I V̂ I .

Left-multiplying the right-hand side by (V̂
†
γ V̂γ )T = I and right-multiplying it by (V̂

†
γ V̂γ ) = I,

we obtain

V̂
T
γ B̂γ V̂γ = (V̂ I V̂

†
γ V̂γ )TB̂I (V̂ I V̂

†
γ V̂γ ).

Left-multiplying both sides by (V̂
†
�)T and right-multiplying them by V̂

†
� gives

(V̂γ V̂
†
�)TB̂γ (V̂γ V̂

†
�) =

(
(V̂ I V̂

†
γ )(V̂γ V̂

†
�)
)T

B̂I
(
(V̂ I V̂

†
γ )(V̂γ V̂

†
�)
)
.

Substituting Rγ ≡ V̂γ V̂
†
� and Pγ→I ≡ V̂ I V̂

†
γ in the above equation leads to

RTγ B̂γ Rγ = (Pγ→IRγ )TB̂I (Pγ→IRγ ),

RTγ B̂γ Rγ = RTγ P
T
γ→I B̂IPγ→IRγ ,

which is the desired result. ��

Appendix B Proof of Theorem 1

To show that the diagonal-E entropy-conservative scheme (18) and the dense-coupling
entropy-conservative scheme (13) are equivalent on affinemeshes for SBPoperators equipped
with facet quadrature rules of degree s ≥ 2r ≥ 2p, we individually deal with the transient,
volumetric, and inter-element coupling terms.

The transient terms in (18) and (13) are the same. Furthermore, noting that on affinemeshes
Nκγ,xi = nγ,xi INκγ and invoking condition 2 of Definition 2, we can regain the volumetric
terms of (13) from the volumetric terms of (18) as follows:

{(
− 2Q̃

T
xi +
∑

κγ

(R̃
T
κγ Ñκγ,xi B̃κγ R̃κγ )

)
◦ Fxi (uκ , uκ )

}
1κ
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=
{(

− 2Q̃
T
xi +
∑

κγ

Ẽ
(κκ)

xi

)
◦ Fxi (uκ , uκ )

}
1κ

=
{(

− 2Q̃
T
xi + Ẽxi

)
◦ Fxi (uκ , uκ )

}
1κ

=
{(

2S̃xi

)
◦ Fxi (uκ , uκ )

}
1κ ,

where we used the property Exi =∑κγ E(κκ)
xi in the penultimate step and Sxi = −2QT

xi + Exi
in the last step. The last term to consider is the facet coupling terms of the two schemes.
We start with the coupling term of the dense-coupling entropy-stable scheme and utilize the
property [Rγ ]l j = δl j , ∀ j ∈ {1, . . . , N }, l ∈ {1, . . . , Nγ } of diagonal-E SBP operators.
For j ∈ {1, . . . , Nκ }, we have
[(

Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

)
1ν

]

j

=
[(

(R̃
T
κγ P̃

T
κγ→I Ñ

(κ)

I ,xi B̃I P̃νγ→I R̃νγ ) ◦ Fxi (uκ , uν)

)
1ν

]

j

=
Nκγ∑

l=1

Nκ I∑

k=1

Nνγ∑

m=1

δl j [Pκγ→I ]kl [N(κ)
I ,xi

]kk[BI ]kk[Pνγ→I ]km
Nν∑

n=1

δmnF∗,EC
xi ([uκ ] j , [uν]n)

=
Nκγ∑

l=1

Nκ I∑

k=1

Nνγ∑

m=1

δl j [Pκγ→I ]kl [N(κ)
I ,xi

]kk[BI ]kk[Pνγ→I ]kmF∗,EC
xi ([uκγ ]l , [uνγ ]m),

where we used the properties of the Kronecker delta and substituted δl j
∑Nν

n=1 δmnF∗,EC
xi

([uκ ] j , [uν]n) = δl jF∗,EC
xi ([uκγ ]l , [uνγ ]m). On affine meshes N(κ)

I ,xi
= nγ,xi INI and we can

write the above expression in matrix form as

(
Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

)
1ν = nγ,xi R̃

T
κγ

(
(P̃

T
κγ→I B̃I P̃νγ→I ) ◦ Fxi (uκγ , uνγ )

)
1νγ

= nγ,xi R̃
T
κγ

(
(B̃κγ P̃I→κγ P̃νγ→I ) ◦ Fxi (uκγ , uνγ )

)
1νγ

= nγ,xi R̃
T
κγ

(
(B̃κγ P̃νγ→κγ ) ◦ Fxi (uκγ , uνγ )

)
1νγ ,

where we used (20), PTκγ→IBI = Bκγ PI→κγ , and (19), Pνγ→κγ ≡ PI→κγ Pνγ→I , in the
second and last steps, respectively. Finally, we can pull out the diagonal mass matrix and
write the normal as a matrix to obtain

(
Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

)
1ν = R̃

T
κγ Ñκγ,xi B̃κγ

(
P̃νγ→κγ ◦ Fxi (uκγ , uνγ )

)
1νγ ,

which is exactly the coupling term in (18).
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Appendix C Dense-Coupling Entropy-Conservative Scheme: Conserva-
tion Proof (Theorems 2 and 3)

C.1 Element-Wise Conservation

Lemma 2 The spatial derivative term in (21) simplifies to

1Tκ

(
2Sxi ◦ F(ρ)

xi (uκ , uκ )

)
1κ = 0, ∀ i ∈ {1, . . . , d}.

Proof Since Sxi is a skew-symmetric matrix and F(ρ)
xi (uκ , uκ ) is a symmetric matrix, their

Hadamard product, i.e. Sxi ◦ F(ρ)
xi (uκ , uκ ), is a skew-symmetric matrix as well. Therefore,

the term above is zero. ��

C.2 Global Conservation

The proof of Theorem 3 follows from the element-wise conservation theorem (Theorem 2),

the symmetry of the flux functions, and the skew-symmetric property
(
E(νκ)
xi

)T = −E(κν)
xi .

Using Theorem 2, we add the element-wise conservation equation for element κ to the
equivalent equation for its neighbouring element ν (and drop the terms not associated with
the shared facet) to obtain

1TκHκ

dρκ

dt
+ 1TνHν

dρν

dt
=

d∑

i=1

1Tκ

{
E(κν)
xi ◦ F(ρ)

xi (uκ , uν)

}
1ν

+ 1Tν

{
E(νκ)
xi ◦ F(ρ)

xi (uν, uκ )

}
1κ

=
d∑

i=1

1Tκ

{
E(κν)
xi ◦ F(ρ)

xi (uκ , uν)

}
1ν

+ 1Tκ

{(
E(νκ)
xi

)T ◦
(
F(ρ)
xi (uν, uκ )

)T}
1ν

=
d∑

i=1

1Tκ

{
E(κν)
xi ◦ F(ρ)

xi (uκ , uν)

}
1ν

− 1Tκ

{
E(κν)
xi ◦ F(ρ)

xi (uκ , uν)

}
1ν

= 0,

where we took the transpose of the second (scalar) term in the second step and used the

properties
(
F(ρ)
xi (uν, uκ )

)T = F(ρ)
xi (uκ , uν) and

(
E(νκ)
xi

)T = −E(κν)
xi in the penultimate step.

Repeating these steps for all facets in �h = �h,i , we arrive at the desired result.
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Appendix D Dense-Coupling Entropy-Conservative Scheme: Entropy
Conservation Proof (Theorems 4 and 5)

D.1 Element-Wise Entropy Conservation

Lemma 3 The transient term in (22) simplifies to

wT
κ H̃

duκ

dt
= 1TκH

dsκ
dt

.

Proof Writing the term in index notation and noting that the Hmatrix is diagonal, we obtain

wT
κ H̃

duκ

dt
=

Nκ∑

j=1

[wκ ]Tj [H] j j
[
duκ

dt

]

j
=

Nκ∑

j=1

[H] j j
[
dsκ
dt

]

j
= 1TκH

dsκ
dt

,

where, for the second equality, we invoked the relation WT dU
dt = ∂S

∂U · dU
dt = dS

dt for each
node j ∈ {1, . . . , Nκ }. ��
Lemma 4 The spatial derivative term in (22) simplifies to

wT
κ

(
2S̃xi ◦ Fxi (uκ , uκ )

)
1κ = −1Tκ Exi ψκ,xi , ∀ i ∈ {1, . . . , d}.

Proof The proof relies on the SBP property, the symmetry and the entropy conservation
property of the entropy-conservative flux function, and the exactness of the derivative operator
for constant functions. Substituting 2Sxi = Sxi − STxi = Qxi − QT

xi , ∀ i ∈ {1, . . . , d}, we
obtain,

wT
κ

(
2S̃xi ◦ Fxi (uκ , uκ )

)
1κ =

Nκ∑

j=1

Nκ∑

k=1

2[wκ ]Tj [Sxi ] jkF∗,EC
xi ([uκ ] j , [uκ ]k)

=
Nκ∑

j=1

Nκ∑

k=1

[wκ ]Tj
(
[Qxi ] jk − [Qxi ]k j

)
F∗,EC

xi ([uκ ] j , [uκ ]k)

=
Nκ∑

j=1

Nκ∑

k=1

[wκ ]Tj [Qxi ] jkF∗,EC
xi ([uκ ] j , [uκ ]k)

−
Nκ∑

j=1

Nκ∑

k=1

[wκ ]Tk [Qxi ] jkF∗,EC
xi ([uκ ]k, [uκ ] j ),

whereweflipped the indices of the second (scalar) term in the last line. Invoking the symmetry
of the entropy-conservative flux and Tadmor’s condition (from Definition 3), we find

wT
κ

(
2S̃xi ◦ Fxi (uκ , uκ )

)
1κ =

Nκ∑

j=1

Nκ∑

k=1

(
[wκ ] j − [wκ ]k

)TF∗,EC
xi ([uκ ] j , [uκ ]k)[Qxi ] jk

=
Nκ∑

j=1

Nκ∑

k=1

(
[ψκ,xi ] j − [ψκ,xi ]k

)
[Qxi ] jk

= 1TκQ
T
xi ψκ,xi − 1TκQxi ψκ,xi .
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Since SBP operators exactly differentiate constant functions, i.e. Qxi 1 = 0, we can drop the
first term and add −1TQT

xi ψκ,xi = 0 to obtain

wT
κ

(
2S̃xi ◦ Fxi (uκ , uκ )

)
1κ = −1Tκ (QT

xi + Qxi )ψκ,xi = −1Tκ Exi ψκ,xi ,

where we used the SBP property for the last equality. ��

D.2 Global Entropy Conservation

Lemma 5 Adding the interface coupling term of two neighbouring elements κ and ν in each
direction, we obtain

wT
κ

{
Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

}
1ν + wT

ν

{
Ẽ
(νκ)

xi ◦ Fxi (uν, uκ )

}
1κ

= 1Tκ E
(κκ)
xi ψκ,xi + 1Tν E

(νν)
xi ψν,xi , ∀ i ∈ {1, . . . , d}.

Proof The proof relies on the property
(
E(νκ)
xi

)T = −E(κν)
xi , the symmetry and the entropy

conservation property of the entropy-conservative flux function, and the exactness of the
extrapolation operators for constant functions. Taking the transpose of the second (scalar)
term on the left-hand side, we obtain

wT
κ

{
Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

}
1ν + wT

ν

{
Ẽ
(νκ)

xi ◦ Fxi (uν, uκ )

}
1κ

= wT
κ

{
Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

}
1ν + 1κ

{(
Ẽ
(νκ)

xi

)T ◦
(
Fxi (uν, uκ )

)T}
wν

= wT
κ

{
Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

}
1ν − 1κ

{
Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

}
wν,

where we used the properties
(
Fxi (uν, uκ )

)T = Fxi (uκ , uν) and
(
E(νκ)
xi

)T = −E(κν)
xi in the

last step. Switching to index notation and invoking Tadmor’s condition, we obtain

wT
κ

{
Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

}
1ν + wT

ν

{
Ẽ
(νκ)

xi ◦ Fxi (uν, uκ )

}
1κ

=
Nκ∑

j=1

Nν∑

k=1

(
[wκ ] j − [wν]k

)T
F∗,EC

xi ([uκ ] j , [uν]k)
[
E(κν)
xi

]

jk

=
Nκ∑

j=1

Nν∑

k=1

(
[ψκ,xi ] j − [ψν,xi ]k

)[
E(κν)
xi

]

jk
.

Switching back to matrix notation and using the property
(
E(κν)
xi

)T = −E(νκ)
xi again, we have

wT
κ

{
Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

}
1ν + wT

ν

{
Ẽ
(νκ)

xi ◦ Fxi (uν, uκ )

}
1κ =ψT

κ,xi E
(κν)
xi 1ν − 1Tκ E

(κν)
xi ψν,xi

=ψT
κ,xi E

(κν)
xi 1ν + ψT

ν,xi E
(νκ)
xi 1κ
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=ψT
κ,xi E

(κκ)
xi 1κ + ψT

ν,xi E
(νν)
xi 1ν

=1Tκ E
(κκ)
xi ψκ,xi + 1Tν E

(νν)
xi ψν,xi ,

where we invoked the properties E(κν)
xi 1ν = E(κκ)

xi 1κ and E(νκ)
xi 1κ = E(νν)

xi 1ν (from Sect. 3.6)

in the third line, and the symmetry of E(κκ)
xi and E(νν)

xi in the last line. ��
Adding the element-wise entropy conservation equation of Theorem 4 for 2 neighbouring

elements and dropping the terms not associated with the shared facet, we obtain

1TκHκ

dsκ
dt

+ 1TνHν

dsν
dt

= −
d∑

i=1

wT
κ

{
Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

}
1ν −

d∑

i=1

wT
ν

{
Ẽ
(νκ)

xi ◦ Fxi (uν, uκ )

}
1κ

+
d∑

i=1

1Tκ E
(κκ)
xi ψκ,xi +

d∑

i=1

1Tν E
(νν)
xi ψν,xi .

Invoking Lemma 5, we see that the right-hand side is zero. Repeating this step for all
facets in �h = �h,i , we obtain the desired result of Theorem 5.

Appendix E Dense-Coupling Entropy-Conservative Scheme: Design-
Order Accuracy (Theorem 6)

To prove Theorem 6, it is sufficient to prove that the penalty term vanishes for
F∗,EC

xi (U(·),U(·)) ∈ Prmin(�κ ∪ �ν) w.r.t. xi , ∀ i ∈ {1, . . . , d}. Noting that E(κκ)
xi =

E(κ I )
xi Pκγ→IRκγ and E(κν)

xi = E(κ I )
xi Pνγ→IRνγ (see Sect. 3.6), for i ∈ {1, . . . , d}, we can show

that
[{

Ẽ
(κν)

xi ◦ Fxi (uκ , uν)

}
1ν −

{
Ẽ
(κκ)

xi ◦ Fxi (uκ , uκ )

}
1κ

]

j

=
[{

(Ẽ
(κ I )
xi P̃νγ→I R̃νγ ) ◦ Fxi (uκ , uν)

}
1ν

−
{
(Ẽ

(κ I )
xi P̃κγ→I R̃κγ ) ◦ Fxi (uκ , uκ )

}
1κ

]

j

=
NI∑

l=1

[E(κ I )
xi ] jl

Nν∑

k=1

[Pνγ→IRνγ ]lkF∗,EC
xi ([uκ ] j , [uν]k)

−
NI∑

l=1

[E(κ I )
xi ] jl

Nκ∑

m=1

[Pκγ→IRκγ ]lmF∗,EC
xi ([uκ ] j , [uκ ]m)

=
NI∑

l=1

[E(κ I )
xi ] jlF∗,EC

xi ([uκ ] j , [uI ]l)

−
NI∑

l=1

[E(κ I )
xi ] jlF∗,EC

xi ([uκ ] j , [uI ]l)

= 0,
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where we used the accuracy properties of Rκγ , Rνγ , Pκγ→I , and Pνγ→I to arrive at the
penultimate step.

Appendix F Pointwise-Coupling Entropy-Conservative Scheme: Conser-
vation Proof (Theorems 7 and 8)

F.1 Element-Wise Conservation

The proof of Theorem 7 is as follows. Taking the transpose of the second term on the right-

hand side of (23) and noting that Pκγ→IRκγ 1κ = 1I and
(
F(ρ)
xi (uκ I , uκ )

)T
= F(ρ)

xi (uκ , uκ I ),

this term cancels out with the first term. Furthermore, invoking Lemma 2 for the volumetric
terms, we arrive at the desired result.

F.2 Global Conservation

The proof of Theorem 8 follows from the element-wise conservation theorem (Theorem 7)
and the symmetry of the entropy-conservative numerical flux. Using Theorem 7, we add
the element-wise conservation equation for two neighbouring elements κ and ν, drop the
terms not associated with the shared facet, and use the properties 1Tκ E

(κ I )
xi = 1TI BIN

(κ)
I ,xi

and

1Tν E
(ν I )
xi = 1TI BIN

(ν)
I ,xi

(from Sect. 3.6) to obtain

1TκHκ

dρκ

dt
+ 1TνHν

dρν

dt
= −

d∑

i=1

1Tκ E
(κ I )
xi f ∗,EC,ρ

xi (uκ I , uν I )

−
d∑

i=1

1Tν E
(ν I )
xi f ∗,EC,ρ

xi (uν I , uκ I )

= −
d∑

i=1

1TI N
(κ)
I ,xi

BI f ∗,EC,ρ
xi (uκ I , uν I )

−
d∑

i=1

1TI N
(ν)
I ,xi

BI f ∗,EC,ρ
xi (uν I , uκ I )

= 0,

where, to arrive at the last step, we used the symmetry of the numerical flux and N(ν)
I ,xi

=
−N(κ)

I ,xi
. Repeating these steps for all facets in �h = �h,i , we arrive at the desired result.
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AppendixGPointwise-CouplingEntropy-ConservativeScheme:Entropy
Conservation Proof (Theorems 9 and 10)

G.1 Element-Wise Entropy Conservation

Lemma 6 The first and second terms on the right-hand side of (24) simplify to

∑

κγ

−wT
κ

{
Ẽ
(κ I )
xi ◦ Fxi (uκ , uκ I )

}
1I + wT

κ R̃
T
κγ P̃

T
κγ→I

{(
Ẽ
(κ I )
xi

)T ◦ Fxi (uκ I , uκ )

}
1κ

= −1Tκ Exi ψκ,xi +
∑

κγ

1TI N
(κ)
I ,xi

BIψκ I ,xi , ∀ i ∈ {1, . . . , d},

where, as previously defined, [ψκ I ,xi ]l ≡ ψxi

([uκ I ]l
)
, ∀ l ∈ {1, . . . , NI } is the potential

flux vector in the xi -direction corresponding to the extrapolated entropy variables wκ I .

Proof The proof relies on the symmetry and the entropy conservation property of the entropy-
conservative flux function and the exactness of the extrapolation operators for constant
functions. Using wκ I ≡ P̃κγ→I R̃κγ wκ , we can show that, for i ∈ {1, . . . , d},

∑

κγ

−wT
κ

{
Ẽ
(κ I )
xi ◦ Fxi (uκ , uκ I )

}
1I + wT

κ R̃
T
κγ P̃

T
κγ→I

{(
Ẽ
(κ I )
xi

)T ◦ Fxi (uκ I , uκ )

}
1κ

=
∑

κγ

−wT
κ

{
Ẽ
(κ I )
xi ◦ Fxi (uκ , uκ I )

}
1I

+ wT
κ I

{(
Ẽ
(κ I )
xi

)T ◦ Fxi (uκ I , uκ )

}
1κ

=
∑

κγ

Nκ∑

j=1

NI∑

l=1

([wκ I ]l − [wκ ] j
)TF∗,EC

xi ([uκ I ]l , [uκ ] j )[E(κ I )
xi ] jl

=
∑

κγ

Nκ∑

j=1

NI∑

l=1

([ψκ I ,xi ]l − [ψκ,xi ] j )[E(κ I )
xi ] jl

=
∑

κγ

1Tκ E
(κ I )
xi ψκ I ,xi − 1TI (E

(κ I )
xi )Tψκ,xi ,

where we invoked the symmetry of the numerical flux in the second step, and Tadmor’s
condition in the penultimate step. Using 1Tκ E

(κ I )
xi = 1TI N

(κ)
I ,xi

BI and
∑

κγ E(κ I )
xi 1I = ETxi 1κ , we

obtain

∑

κγ

−wT
κ

{
Ẽ
(κ I )
xi ◦ Fxi (uκ , uκ I )

}
1I + wT

κ R̃
T
κγ P̃

T
κγ→I

{(
Ẽ
(κ I )
xi

)T ◦ Fxi (uκ I , uκ )

}
1κ

=
∑

κγ

1TI N
(κ)
I ,xi

BIψκ I ,xi − 1Tκ Exi ψκ,xi ,

which is the desired result. ��
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G.2 Global Entropy Conservation

The proof of Theorem 10 follows from the element-wise entropy conservation theorem (The-
orem 9), and the symmetry and the entropy conservation property of the entropy-conservative
numerical flux. Using Theorem 9, we add the element-wise entropy conservation equation
for two neighbouring elements κ and ν and, dropping the terms not associated with the shared
facet, we obtain

1TκHκ

dsκ
dt

+ 1TνHν

dsν
dt

=
d∑

i=1

1TI N
(κ)
I ,xi

BIψκ I ,xi +
d∑

i=1

1TI N
(ν)
I ,xi

BIψν I ,xi

−
d∑

i=1

wT
κ I Ñ

(κ)

I ,xi B̃I f
∗,EC
xi (uκ I , uν I )

−
d∑

i=1

wT
κ I Ñ

(ν)

I ,xi B̃I f
∗,EC
xi (uν I , uκ I )

=
d∑

i=1

1TI N
(κ)
I ,xi

BI (ψκ I ,xi − ψν I ,xi )

−
d∑

i=1

(wκ I − wν I )
TÑ

(κ)

I ,xi B̃I f
∗,EC
xi (uκ I , uν I ),

where we used N(ν)
I ,xi

= −N(κ)
I ,xi

and the symmetry of the numerical flux. Writing the last term
in index notation and invoking Tadmor’s condition, we see that

(wκ I − wν I )
TÑ

(κ)

I ,xi B̃I f
∗,EC
xi (uκ I , uν I )

=
NI∑

l=1

[N(κ)
I ,xi

]l [BI ]l([wκ I ]l − [wν I ]l)TF∗,EC
xi ([uκ I ]l , [uν I ]l)

=
NI∑

l=1

[N(κ)
I ,xi

]l [BI ]l([ψκ I ,xi ]l − [ψν I ,xi ]l)

= 1TI N
(κ)
I ,xi

BI (ψκ I ,xi − ψν I ,xi ).

Plugging this back into the first equation gives

1TκHκ

dsκ
dt

+ 1TνHν

dsν
dt

= 0.

Repeating these steps for all facets in �h = �h,i , we arrive at the desired result:

∑

�κ∈Th
1TκHκ

dsκ
dt

= 0.
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AppendixHPointwise-Coupling Entropy-Conservative Scheme:Design-
Order Accuracy (Theorem 11)

To prove Theorem 11, it is sufficient to show that the penalty term of (14) vanishes for
F∗,EC

xi (U(·),U(·)), W(U(·)), U(·) ∈ Prmin(�κ ∪ �ν) w.r.t. xi , ∀ i ∈ {1, . . . , d}. First, we
show that the first and last terms in the right-hand side of (14) cancel each other. Using E(κκ)

xi =
E(κ I )
xi Pκγ→IRκγ , the first and last terms can be simplified as follows for i ∈ {1, . . . , d}:

[
−
{
Ẽ
(κ I )
xi ◦ Fxi (uκ , uκ I )

}
1I +

{
Ẽ
(κκ)

xi ◦ Fxi (uκ , uκ )

}
1κ

]

j

=
[

−
{
Ẽ
(κ I )
xi ◦ Fxi (uκ , uκ I )

}
1I +

{
(Ẽ

(κ I )
xi P̃κγ→I R̃κγ ) ◦ Fxi (uκ , uκ )

}
1κ

]

j

= −
NI∑

l=1

[E(κ I )
xi ] jlF∗,EC

xi ([uκ ] j , [uκ I ]l)

+
NI∑

l=1

[E(κ I )
xi ] jl

Nκ∑

k=1

(Pκγ→IRκγ )lkF∗,EC
xi ([uκ ] j , [uκ ]k)

= −
NI∑

l=1

[E(κ I )
xi ] jlF∗,EC

xi ([uκ ] j , [uκ I ]l)

+
NI∑

l=1

[E(κ I )
xi ] jlF∗,EC

xi ([uκ ] j , [uI ]l),

where we used the accuracy properties of the extrapolation operators Rκγ and Pκγ→I in the
last step. Furthermore, since bothW(U(·)) andU(·) are in the degree rmin polynomial space,
the conservative variables evaluated at the extrapolated entropy variables are equal to the
extrapolated conservative variables, i.e. uκ I = uI . Therefore, the two terms in the last line
above cancel each other.

Continuing, the second and third term in the right-hand side of (14) simplify, for i ∈
{1, . . . , d}, to

[
R̃
T
κγ P̃

T
κγ→I

{(
Ẽ
(κ I )
xi

)T ◦ Fxi (uκ I , uκ )

}
1κ − Ẽ

(κ I )
xi f ∗,EC

xi (uκ I , uν I )

]

j

=
[
R̃
T
κγ P̃

T
κγ→I

{(
R̃
T
κγ P̃

T
κγ→I Ñ

(κ)

I ,xi B̃I
)T ◦ Fxi (uκ I , uκ )

}
1κ

− R̃
T
κγ P̃

T
κγ→I Ñ

(κ)

I ,xi B̃I f
∗,EC
xi (uκ I , uν I )

]

j

=
NI∑

l=1

[Pκγ→IRκγ ]l j [N(κ)
I ,xi

BI ]ll
Nκ∑

k=1

[Pκγ→IRκγ ]lkF∗,EC
xi ([uκ I ]l , [uκ ]k)

−
NI∑

l=1

[Pκγ→IRκγ ]l j [N(κ)
I ,xi

BI ]llF∗,EC
xi ([uκ I ]l , [uν I ]l)
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=
NI∑

l=1

[Pκγ→IRκγ ]l j [N(κ)
I ,xi

BI ]llF∗,EC
xi ([uκ I ]l , [uI ]l)

−
NI∑

l=1

[Pκγ→IRκγ ]l j [N(κ)
I ,xi

BI ]llF∗,EC
xi ([uκ I ]l , [uν I ]l),

where we used the accuracy properties of Rκγ and Pκγ→I in the last step. Again, noting that
uκ I = uν I = uI (since bothW(U(·)) andU(·) are in the degree rmin polynomial space), the
last line sums to zero.

Appendix I Entropy Dissipative Term: Conservation Proof (Theorem 12)

The proof of Theorem 12 is as follows. Invoking the exactness of the extrapolation oper-
ators for constant functions (i.e. Pκγ→IRκγ 1κ = Pνγ→IRνγ 1ν = 1I ) and the symmetry

I (uκ I , uν I ; n(κ)
I ) = I (uν I , uκ I ; n(ν)

I ), we show that

1TκR
T
κγ P

T
κγ→II (uκ I , uν I ; n(κ)

I )(ρ)B̃I (wκ I − wν I )

+ 1Tν R
T
νγ P

T
νγ→II (uν I , uκ I ; n(ν)

I )(ρ)B̃I (wν I − wκ I )

= 1TI I (uκ I , uν I ; n(κ)
I )(ρ)B̃I

[
(wκ I − wν I ) + (wν I − wκ I )

]

= 0,

which is the desired result.

Appendix J Entropy Dissipative Term: Entropy Dissipation Proof (Theo-
rem 13)

The proof of Theorem 13 is as follows. Using the definitions wκ I ≡ P̃κγ→I R̃κγ wκ and

wν I ≡ P̃νγ→I R̃νγ wν and I (uκ I , uν I ; n(κ)
I ) = I (uν I , uκ I ; n(ν)

I ), we show that

− wT
κ R̃

T
κγ P̃

T
κγ→II (uκ I , uν I ; n(κ)

I )B̃I (wκ I − wν I )

− wT
ν R̃

T
νγ P̃

T
νγ→II (uν I , uκ I ; n(ν)

I )B̃I (wν I − wκ I )

= −(wκ I − wν I )
TI (uκ I , uν I ; n(κ)

I )B̃I (wκ I − wν I )

≤ 0,

since the matrix I (uκ I , uν I ; n(κ)
I )B̃I is symmetric positive semi-definite.

8 Appendix K Entropy Dissipative Term: Design-Order Accuracy Proof
(Theorem 14)

To prove Theorem 14, it is sufficient to show that the interface penalty term (17) vanishes for
W(U(·)) ∈ Prmin(�κ ∪ �ν) w.r.t. xi , ∀ i ∈ {1, . . . , d}. For l ∈ {1, . . . , NI }, we can show
that

123



70 Page 44 of 46 Journal of Scientific Computing (2020) 82 :70

[wκ I − wν I ]l =
Nκ∑

j=1

[Pκγ→IRκγ ]l j [wκ ] j −
Nν∑

k=1

[Pνγ→IRνγ ]lk[wν]k

= [wI ]l − [wI ]l
= 0,

where we used the accuracy properties of Rκγ , Rνγ , Pκγ→I , and Pνγ→I .
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